[−][src]Struct nalgebra::geometry::Translation
A translation.
Fields
vector: VectorN<N, D>
The translation coordinates, i.e., how much is added to a point's coordinates when it is translated.
Methods
impl<N: Scalar, D: DimName> Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn from_vector(vector: VectorN<N, D>) -> Translation<N, D>
[src]
Use ::from
instead.
Creates a new translation from the given vector.
pub fn inverse(&self) -> Translation<N, D> where
N: ClosedNeg,
[src]
N: ClosedNeg,
Inverts self
.
Example
let t = Translation3::new(1.0, 2.0, 3.0); assert_eq!(t * t.inverse(), Translation3::identity()); assert_eq!(t.inverse() * t, Translation3::identity()); // Work in all dimensions. let t = Translation2::new(1.0, 2.0); assert_eq!(t * t.inverse(), Translation2::identity()); assert_eq!(t.inverse() * t, Translation2::identity());
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Converts this translation into its equivalent homogeneous transformation matrix.
Example
let t = Translation3::new(10.0, 20.0, 30.0); let expected = Matrix4::new(1.0, 0.0, 0.0, 10.0, 0.0, 1.0, 0.0, 20.0, 0.0, 0.0, 1.0, 30.0, 0.0, 0.0, 0.0, 1.0); assert_eq!(t.to_homogeneous(), expected); let t = Translation2::new(10.0, 20.0); let expected = Matrix3::new(1.0, 0.0, 10.0, 0.0, 1.0, 20.0, 0.0, 0.0, 1.0); assert_eq!(t.to_homogeneous(), expected);
pub fn inverse_mut(&mut self) where
N: ClosedNeg,
[src]
N: ClosedNeg,
Inverts self
in-place.
Example
let t = Translation3::new(1.0, 2.0, 3.0); let mut inv_t = Translation3::new(1.0, 2.0, 3.0); inv_t.inverse_mut(); assert_eq!(t * inv_t, Translation3::identity()); assert_eq!(inv_t * t, Translation3::identity()); // Work in all dimensions. let t = Translation2::new(1.0, 2.0); let mut inv_t = Translation2::new(1.0, 2.0); inv_t.inverse_mut(); assert_eq!(t * inv_t, Translation2::identity()); assert_eq!(inv_t * t, Translation2::identity());
impl<N: Scalar + ClosedAdd, D: DimName> Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Translate the given point.
This is the same as the multiplication self * pt
.
Example
let t = Translation3::new(1.0, 2.0, 3.0); let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0)); assert_eq!(transformed_point, Point3::new(5.0, 7.0, 9.0));
impl<N: Scalar + ClosedSub, D: DimName> Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Translate the given point by the inverse of this translation.
Example
let t = Translation3::new(1.0, 2.0, 3.0); let transformed_point = t.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0)); assert_eq!(transformed_point, Point3::new(3.0, 3.0, 3.0));
impl<N: Scalar + Zero, D: DimName> Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn identity() -> Translation<N, D>
[src]
Creates a new identity translation.
Example
let t = Translation2::identity(); let p = Point2::new(1.0, 2.0); assert_eq!(t * p, p); // Works in all dimensions. let t = Translation3::identity(); let p = Point3::new(1.0, 2.0, 3.0); assert_eq!(t * p, p);
impl<N: Scalar> Translation<N, U1> where
DefaultAllocator: Allocator<N, U1>,
[src]
DefaultAllocator: Allocator<N, U1>,
pub fn new(x: N) -> Self
[src]
Initializes this translation from its components.
Example
let t = Translation1::new(1.0); assert!(t.vector.x == 1.0);
impl<N: Scalar> Translation<N, U2> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
pub fn new(x: N, y: N) -> Self
[src]
Initializes this translation from its components.
Example
let t = Translation2::new(1.0, 2.0); assert!(t.vector.x == 1.0 && t.vector.y == 2.0);
impl<N: Scalar> Translation<N, U3> where
DefaultAllocator: Allocator<N, U3>,
[src]
DefaultAllocator: Allocator<N, U3>,
pub fn new(x: N, y: N, z: N) -> Self
[src]
Initializes this translation from its components.
Example
let t = Translation3::new(1.0, 2.0, 3.0); assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0);
impl<N: Scalar> Translation<N, U4> where
DefaultAllocator: Allocator<N, U4>,
[src]
DefaultAllocator: Allocator<N, U4>,
pub fn new(x: N, y: N, z: N, w: N) -> Self
[src]
Initializes this translation from its components.
Example
let t = Translation4::new(1.0, 2.0, 3.0, 4.0); assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0);
impl<N: Scalar> Translation<N, U5> where
DefaultAllocator: Allocator<N, U5>,
[src]
DefaultAllocator: Allocator<N, U5>,
pub fn new(x: N, y: N, z: N, w: N, a: N) -> Self
[src]
Initializes this translation from its components.
Example
let t = Translation5::new(1.0, 2.0, 3.0, 4.0, 5.0); assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0);
impl<N: Scalar> Translation<N, U6> where
DefaultAllocator: Allocator<N, U6>,
[src]
DefaultAllocator: Allocator<N, U6>,
pub fn new(x: N, y: N, z: N, w: N, a: N, b: N) -> Self
[src]
Initializes this translation from its components.
Example
let t = Translation6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0); assert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0 && t.vector.b == 6.0);
Trait Implementations
impl<N: Scalar, D: DimName> Copy for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
impl<N: Scalar + Eq, D: DimName> Eq for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Scalar, D: DimName> Clone for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Clone,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Clone,
fn clone(&self) -> Self
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<N: Scalar + PartialEq, D: DimName> PartialEq<Translation<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn eq(&self, right: &Translation<N, D>) -> bool
[src]
#[must_use]
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl<N: Scalar + Zero + One, D: DimName> From<Translation<N, D>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn from(t: Translation<N, D>) -> Self
[src]
impl<N: Scalar, D: DimName> From<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Scalar> Deref for Translation<N, U1> where
DefaultAllocator: Allocator<N, U1>,
[src]
DefaultAllocator: Allocator<N, U1>,
impl<N: Scalar> Deref for Translation<N, U2> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: Scalar> Deref for Translation<N, U3> where
DefaultAllocator: Allocator<N, U3>,
[src]
DefaultAllocator: Allocator<N, U3>,
impl<N: Scalar> Deref for Translation<N, U4> where
DefaultAllocator: Allocator<N, U4>,
[src]
DefaultAllocator: Allocator<N, U4>,
impl<N: Scalar> Deref for Translation<N, U5> where
DefaultAllocator: Allocator<N, U5>,
[src]
DefaultAllocator: Allocator<N, U5>,
impl<N: Scalar> Deref for Translation<N, U6> where
DefaultAllocator: Allocator<N, U6>,
[src]
DefaultAllocator: Allocator<N, U6>,
type Target = XYZWAB<N>
The resulting type after dereferencing.
fn deref(&self) -> &Self::Target
[src]
impl<N: Scalar> DerefMut for Translation<N, U1> where
DefaultAllocator: Allocator<N, U1>,
[src]
DefaultAllocator: Allocator<N, U1>,
impl<N: Scalar> DerefMut for Translation<N, U2> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: Scalar> DerefMut for Translation<N, U3> where
DefaultAllocator: Allocator<N, U3>,
[src]
DefaultAllocator: Allocator<N, U3>,
impl<N: Scalar> DerefMut for Translation<N, U4> where
DefaultAllocator: Allocator<N, U4>,
[src]
DefaultAllocator: Allocator<N, U4>,
impl<N: Scalar> DerefMut for Translation<N, U5> where
DefaultAllocator: Allocator<N, U5>,
[src]
DefaultAllocator: Allocator<N, U5>,
impl<N: Scalar> DerefMut for Translation<N, U6> where
DefaultAllocator: Allocator<N, U6>,
[src]
DefaultAllocator: Allocator<N, U6>,
impl<N: Scalar + Hash, D: DimName + Hash> Hash for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<N: RealField + Display, D: DimName> Display for Translation<N, D> where
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
[src]
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
impl<N: Debug + Scalar, D: Debug + DimName> Debug for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField> Mul<Translation<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Translation<N, U2>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Translation<N, U2>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Translation<N, U2>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Translation<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Translation<N, U2>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Translation<N, U2>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Translation<N, U2>) -> Self::Output
[src]
impl<N: RealField> Mul<Unit<Complex<N>>> for Translation<N, U2> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, right: UnitComplex<N>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Unit<Complex<N>>> for &'a Translation<N, U2> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, right: UnitComplex<N>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Unit<Complex<N>>> for Translation<N, U2> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b UnitComplex<N>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Unit<Complex<N>>> for &'a Translation<N, U2> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Isometry<N, U2, UnitComplex<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b UnitComplex<N>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimName> Mul<&'b Translation<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimName> Mul<Translation<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimName> Mul<&'b Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N, D: DimName> Mul<Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<N, D: DimName> Mul<Point<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Translation<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Isometry<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Isometry<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Isometry<N, D, R>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Mul<Translation<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Mul<Translation<N, D>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Mul<&'b Translation<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Mul<&'b Translation<N, D>> for &'a Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N: RealField> Mul<Translation<N, U3>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, U3>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Translation<N, U3>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, U3>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Translation<N, U3>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, U3>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Translation<N, U3>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, U3>) -> Self::Output
[src]
impl<N: RealField, D: DimName> Mul<Rotation<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Rotation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName> Mul<Rotation<N, D>> for &'a Translation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Rotation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName> Mul<&'b Rotation<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Rotation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Translation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
type Output = Isometry<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Rotation<N, D>) -> Self::Output
[src]
impl<N: RealField> Mul<Unit<Quaternion<N>>> for Translation<N, U3> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: UnitQuaternion<N>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Unit<Quaternion<N>>> for &'a Translation<N, U3> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: UnitQuaternion<N>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Unit<Quaternion<N>>> for Translation<N, U3> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b UnitQuaternion<N>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Unit<Quaternion<N>>> for &'a Translation<N, U3> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Isometry<N, U3, UnitQuaternion<N>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b UnitQuaternion<N>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Translation<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, R>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Translation<N, D> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Similarity<N, D, R>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, R>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Translation<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Translation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Translation<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Translation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Translation<N, D>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for &'a Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for &'a Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimName> Div<&'b Translation<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the /
operator.
fn div(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimName> Div<Translation<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the /
operator.
fn div(self, right: Translation<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimName> Div<&'b Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the /
operator.
fn div(self, right: &'b Translation<N, D>) -> Self::Output
[src]
impl<N, D: DimName> Div<Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Translation<N, D>
The resulting type after applying the /
operator.
fn div(self, right: Translation<N, D>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: Translation<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Translation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: Translation<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Translation<N, D>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Translation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Translation<N, D>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for &'a Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: Transform<N, D, C>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for &'a Translation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
type Output = Transform<N, D, C::Representative>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b Transform<N, D, C>) -> Self::Output
[src]
impl<'b, N, D: DimName> MulAssign<&'b Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
fn mul_assign(&mut self, right: &'b Translation<N, D>)
[src]
impl<N, D: DimName> MulAssign<Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
fn mul_assign(&mut self, right: Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Translation<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<N: RealField, D: DimName, R> MulAssign<Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Translation<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> MulAssign<Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> MulAssign<&'b Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn mul_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<'b, N, D: DimName> DivAssign<&'b Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
fn div_assign(&mut self, right: &'b Translation<N, D>)
[src]
impl<N, D: DimName> DivAssign<Translation<N, D>> for Translation<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
fn div_assign(&mut self, right: Translation<N, D>)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> DivAssign<Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn div_assign(&mut self, rhs: Translation<N, D>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> DivAssign<&'b Translation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>,
fn div_assign(&mut self, rhs: &'b Translation<N, D>)
[src]
impl<N: Scalar, D: DimName> Serialize for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Serialize,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Serialize,
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Deserialize<'a>,
[src]
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Deserialize<'a>,
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where
Des: Deserializer<'a>,
[src]
Des: Deserializer<'a>,
impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq<Translation<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
The inverse of ApproxEq::abs_diff_eq
.
impl<N: Scalar + RelativeEq, D: DimName> RelativeEq<Translation<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_relative() -> Self::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
The inverse of ApproxEq::relative_eq
.
impl<N: Scalar + UlpsEq, D: DimName> UlpsEq<Translation<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_ulps() -> u32
[src]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
The inverse of ApproxEq::ulps_eq
.
impl<N: Scalar + Zero + ClosedAdd, D: DimName> One for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn one() -> Self
[src]
fn set_one(&mut self)
[src]
Sets self
to the multiplicative identity element of Self
, 1
.
fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
Returns true
if self
is equal to the multiplicative identity. Read more
impl<N: Scalar, D: DimName> Distribution<Translation<N, D>> for Standard where
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N>,
[src]
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N>,
fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> Translation<N, D>
[src]
fn sample_iter<R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
R: Rng,
[src]
R: Rng,
Create an iterator that generates random values of T
, using rng
as the source of randomness. Read more
impl<N: RealField, D: DimName> AbstractMagma<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn operate(&self, rhs: &Self) -> Self
[src]
fn op(&self, O, lhs: &Self) -> Self
[src]
Performs specific operation.
impl<N: RealField, D: DimName> AbstractQuasigroup<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
Returns true
if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
Returns true
if latin squareness holds for the given arguments. Read more
impl<N: RealField, D: DimName> AbstractSemigroup<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
Returns true
if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
Returns true
if associativity holds for the given arguments.
impl<N: RealField, D: DimName> AbstractLoop<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName> AbstractMonoid<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N: RealField, D: DimName> AbstractGroup<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName> TwoSidedInverse<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn two_sided_inverse(&self) -> Self
[src]
fn two_sided_inverse_mut(&mut self)
[src]
impl<N: RealField, D: DimName> Identity<Multiplicative> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N1, N2, D: DimName> SubsetOf<Translation<N2, D>> for Translation<N1, D> where
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Translation<N2, D>
[src]
fn is_in_subset(rot: &Translation<N2, D>) -> bool
[src]
unsafe fn from_superset_unchecked(rot: &Translation<N2, D>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Isometry<N2, D, R>
[src]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
fn to_superset(&self) -> Similarity<N2, D, R>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool
[src]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn to_superset(&self) -> Transform<N2, D, C>
[src]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool
[src]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Translation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>
[src]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool
[src]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N: RealField, D: DimName> DirectIsometry<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Rotation = Id
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Self
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Self, Id, Id, Id)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, _: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, _: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>
[src]
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<N: RealField, D: DimName> Isometry<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName> Translation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
Subgroups of the n-dimensional translation group T(n)
.
fn to_vector(&self) -> VectorN<N, D>
[src]
fn from_vector(v: VectorN<N, D>) -> Option<Self>
[src]
fn powf(&self, n: N) -> Option<Self>
[src]
fn translation_between(a: &Point<N, D>, b: &Point<N, D>) -> Option<Self>
[src]
impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Self
[src]
fn rotation(&self) -> Id
[src]
fn scaling(&self) -> Id
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Auto Trait Implementations
impl<N, D> !Unpin for Translation<N, D>
impl<N, D> !Sync for Translation<N, D>
impl<N, D> !Send for Translation<N, D>
impl<N, D> !UnwindSafe for Translation<N, D>
impl<N, D> !RefUnwindSafe for Translation<N, D>
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
[src]
fn is_in_subset(&self) -> bool
[src]
unsafe fn to_subset_unchecked(&self) -> SS
[src]
fn from_subset(element: &SS) -> SP
[src]
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,
impl<T> MultiplicativeMagma for T where
T: AbstractMagma<Multiplicative>,
[src]
T: AbstractMagma<Multiplicative>,
impl<T> MultiplicativeQuasigroup for T where
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
[src]
T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma,
impl<T> MultiplicativeLoop for T where
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
[src]
T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One,
impl<T> MultiplicativeSemigroup for T where
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
[src]
T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma,
impl<T> MultiplicativeMonoid for T where
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
[src]
T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One,
impl<T> MultiplicativeGroup for T where
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
[src]
T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid,
impl<R, E> Transformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
fn transform_point(&self, pt: &E) -> E
[src]
fn transform_vector(
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
impl<R, E> AffineTransformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
type Rotation = Id<Multiplicative>
Type of the first rotation to be applied.
type NonUniformScaling = R
Type of the non-uniform scaling to be applied.
type Translation = Id<Multiplicative>
The type of the pure translation part of this affine transformation.
fn decompose(
&self
) -> (Id<Multiplicative>, Id<Multiplicative>, R, Id<Multiplicative>)
[src]
&self
) -> (Id<Multiplicative>, Id<Multiplicative>, R, Id<Multiplicative>)
fn append_translation(&self, &<R as AffineTransformation<E>>::Translation) -> R
[src]
fn prepend_translation(&self, &<R as AffineTransformation<E>>::Translation) -> R
[src]
fn append_rotation(&self, &<R as AffineTransformation<E>>::Rotation) -> R
[src]
fn prepend_rotation(&self, &<R as AffineTransformation<E>>::Rotation) -> R
[src]
fn append_scaling(
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
[src]
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
fn prepend_scaling(
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
[src]
&self,
s: &<R as AffineTransformation<E>>::NonUniformScaling
) -> R
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>
[src]
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<R, E> Similarity<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField + SubsetOf<R>,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
type Scaling = R
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> <R as AffineTransformation<E>>::Translation
[src]
fn rotation(&self) -> <R as AffineTransformation<E>>::Rotation
[src]
fn scaling(&self) -> <R as Similarity<E>>::Scaling
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<R, E> ProjectiveTransformation<E> for R where
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
[src]
E: EuclideanSpace<RealField = R>,
R: RealField,
<E as EuclideanSpace>::Coordinates: ClosedMul<R>,
<E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
<E as EuclideanSpace>::Coordinates: ClosedNeg,
fn inverse_transform_point(&self, pt: &E) -> E
[src]
fn inverse_transform_vector(
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
v: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates