[−][src]Type Definition nalgebra::base::MatrixN
type MatrixN<N, D> = MatrixMN<N, D, D>;
A statically sized column-major square matrix with D
rows and columns.
Methods
impl<N, D: DimName> MatrixN<N, D> where
N: Scalar + Ring,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Ring,
DefaultAllocator: Allocator<N, D, D>,
pub fn new_scaling(scaling: N) -> Self
[src]
Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
pub fn new_nonuniform_scaling<SB>(
scaling: &Vector<N, DimNameDiff<D, U1>, SB>
) -> Self where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
[src]
scaling: &Vector<N, DimNameDiff<D, U1>, SB>
) -> Self where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
Creates a new homogeneous matrix that applies a distinct scaling factor for each dimension.
pub fn new_translation<SB>(
translation: &Vector<N, DimNameDiff<D, U1>, SB>
) -> Self where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
[src]
translation: &Vector<N, DimNameDiff<D, U1>, SB>
) -> Self where
D: DimNameSub<U1>,
SB: Storage<N, DimNameDiff<D, U1>>,
Creates a new homogeneous matrix that applies a pure translation.
impl<N, D: Dim> MatrixN<N, D> where
N: Scalar,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar,
DefaultAllocator: Allocator<N, D, D>,
pub fn from_diagonal<SB: Storage<N, D>>(diag: &Vector<N, D, SB>) -> Self where
N: Zero,
[src]
N: Zero,
Creates a square matrix with its diagonal set to diag
and all other entries set to 0.
Example
let m = Matrix3::from_diagonal(&Vector3::new(1.0, 2.0, 3.0)); // The two additional arguments represent the matrix dimensions. let dm = DMatrix::from_diagonal(&DVector::from_row_slice(&[1.0, 2.0, 3.0])); assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 && m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 && m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 3.0); assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 && dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 && dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 3.0);
Trait Implementations
impl<N: Scalar + Zero + One, D: DimName> From<Translation<N, D>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn from(t: Translation<N, D>) -> Self
[src]
impl<N: RealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>,
impl<N: RealField, D: DimName, R> From<Similarity<N, D, R>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
fn from(sim: Similarity<N, D, R>) -> Self
[src]
impl<N: RealField, D: DimName, C> From<Transform<N, D, C>> for MatrixN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
impl<N, D: DimName> Product<Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer>> for MatrixN<N, D> where
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
impl<'a, N, D: DimName> Product<&'a Matrix<N, D, D, <DefaultAllocator as Allocator<N, D, D>>::Buffer>> for MatrixN<N, D> where
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
impl<N, D: DimName> One for MatrixN<N, D> where
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>,
fn one() -> Self
[src]
fn set_one(&mut self)
[src]
Sets self
to the multiplicative identity element of Self
, 1
.
fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
Returns true
if self
is equal to the multiplicative identity. Read more
impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
fn operate(&self, other: &Self) -> Self
[src]
fn op(&self, O, lhs: &Self) -> Self
[src]
Performs specific operation.
impl<N, D: DimName> AbstractSemigroup<Multiplicative> for MatrixN<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + AbstractSemigroup<Multiplicative>,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + AbstractSemigroup<Multiplicative>,
DefaultAllocator: Allocator<N, D, D>,
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
Returns true
if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
[src]
Self: Eq,
Returns true
if associativity holds for the given arguments.
impl<N, D: DimName> AbstractMonoid<Multiplicative> for MatrixN<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + AbstractMonoid<Multiplicative>,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + AbstractMonoid<Multiplicative>,
DefaultAllocator: Allocator<N, D, D>,
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq<Self>,
[src]
Self: RelativeEq<Self>,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
[src]
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D> where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
impl<N: RealField, D: DimNameSub<U1>> Transformation<Point<N, <D as DimNameSub<U1>>::Output>> for MatrixN<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
fn transform_vector(
&self,
v: &VectorN<N, DimNameDiff<D, U1>>
) -> VectorN<N, DimNameDiff<D, U1>>
[src]
&self,
v: &VectorN<N, DimNameDiff<D, U1>>
) -> VectorN<N, DimNameDiff<D, U1>>
fn transform_point(
&self,
pt: &Point<N, DimNameDiff<D, U1>>
) -> Point<N, DimNameDiff<D, U1>>
[src]
&self,
pt: &Point<N, DimNameDiff<D, U1>>
) -> Point<N, DimNameDiff<D, U1>>