[−][src]Struct nalgebra::geometry::Point
A point in a n-dimensional euclidean space.
Fields
coords: VectorN<N, D>
The coordinates of this point, i.e., the shift from the origin.
Methods
impl<N: Scalar, D: DimName> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub fn to_homogeneous(&self) -> VectorN<N, DimNameSum<D, U1>> where
N: One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>>,
[src]
N: One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>>,
Converts this point into a vector in homogeneous coordinates, i.e., appends a 1
at the
end of it.
This is the same as .into()
.
Example
let p = Point2::new(10.0, 20.0); assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0)); // This works in any dimension. let p = Point3::new(10.0, 20.0, 30.0); assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
pub fn from_coordinates(coords: VectorN<N, D>) -> Self
[src]
Use Point::from(vector) instead.
Creates a new point with the given coordinates.
pub fn len(&self) -> usize
[src]
The dimension of this point.
Example
let p = Point2::new(1.0, 2.0); assert_eq!(p.len(), 2); // This works in any dimension. let p = Point3::new(10.0, 20.0, 30.0); assert_eq!(p.len(), 3);
pub fn stride(&self) -> usize
[src]
This methods is no longer significant and will always return 1.
The stride of this point. This is the number of buffer element separating each component of this point.
ⓘImportant traits for MatrixIter<'a, N, R, C, S>pub fn iter(
&self
) -> MatrixIter<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>
[src]
&self
) -> MatrixIter<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>
Iterates through this point coordinates.
Example
let p = Point3::new(1.0, 2.0, 3.0); let mut it = p.iter().cloned(); assert_eq!(it.next(), Some(1.0)); assert_eq!(it.next(), Some(2.0)); assert_eq!(it.next(), Some(3.0)); assert_eq!(it.next(), None);
pub unsafe fn get_unchecked(&self, i: usize) -> &N
[src]
Gets a reference to i-th element of this point without bound-checking.
ⓘImportant traits for MatrixIterMut<'a, N, R, C, S>pub fn iter_mut(
&mut self
) -> MatrixIterMut<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>
[src]
&mut self
) -> MatrixIterMut<N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>
Mutably iterates through this point coordinates.
Example
let mut p = Point3::new(1.0, 2.0, 3.0); for e in p.iter_mut() { *e *= 10.0; } assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut N
[src]
Gets a mutable reference to i-th element of this point without bound-checking.
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize)
[src]
Swaps two entries without bound-checking.
impl<N: Scalar, D: DimName> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
pub unsafe fn new_uninitialized() -> Self
[src]
Creates a new point with uninitialized coordinates.
pub fn origin() -> Self where
N: Zero,
[src]
N: Zero,
Creates a new point with all coordinates equal to zero.
Example
// This works in any dimension. // The explicit crate::<f32> type annotation may not always be needed, // depending on the context of type inference. let pt = Point2::<f32>::origin(); assert!(pt.x == 0.0 && pt.y == 0.0); let pt = Point3::<f32>::origin(); assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);
pub fn from_slice(components: &[N]) -> Self
[src]
Creates a new point from a slice.
Example
let data = [ 1.0, 2.0, 3.0 ]; let pt = Point2::from_slice(&data[..2]); assert_eq!(pt, Point2::new(1.0, 2.0)); let pt = Point3::from_slice(&data); assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));
pub fn from_homogeneous(v: VectorN<N, DimNameSum<D, U1>>) -> Option<Self> where
N: Scalar + Zero + One + ClosedDiv,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>>,
[src]
N: Scalar + Zero + One + ClosedDiv,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>>,
Creates a new point from its homogeneous vector representation.
In practice, this builds a D-dimensional points with the same first D component as v
divided by the last component of v
. Returns None
if this divisor is zero.
Example
let coords = Vector4::new(1.0, 2.0, 3.0, 1.0); let pt = Point3::from_homogeneous(coords); assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0))); // All component of the result will be divided by the // last component of the vector, here 2.0. let coords = Vector4::new(1.0, 2.0, 3.0, 2.0); let pt = Point3::from_homogeneous(coords); assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5))); // Fails because the last component is zero. let coords = Vector4::new(1.0, 2.0, 3.0, 0.0); let pt = Point3::from_homogeneous(coords); assert!(pt.is_none()); // Works also in other dimensions. let coords = Vector3::new(1.0, 2.0, 1.0); let pt = Point2::from_homogeneous(coords); assert_eq!(pt, Some(Point2::new(1.0, 2.0)));
impl<N: Scalar> Point<N, U1> where
DefaultAllocator: Allocator<N, U1>,
[src]
DefaultAllocator: Allocator<N, U1>,
impl<N: Scalar> Point<N, U2> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
pub fn new(x: N, y: N) -> Self
[src]
Initializes this point from its components.
Example
let p = Point2::new(1.0, 2.0); assert!(p.x == 1.0 && p.y == 2.0);
impl<N: Scalar> Point<N, U3> where
DefaultAllocator: Allocator<N, U3>,
[src]
DefaultAllocator: Allocator<N, U3>,
pub fn new(x: N, y: N, z: N) -> Self
[src]
Initializes this point from its components.
Example
let p = Point3::new(1.0, 2.0, 3.0); assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);
impl<N: Scalar> Point<N, U4> where
DefaultAllocator: Allocator<N, U4>,
[src]
DefaultAllocator: Allocator<N, U4>,
pub fn new(x: N, y: N, z: N, w: N) -> Self
[src]
Initializes this point from its components.
Example
let p = Point4::new(1.0, 2.0, 3.0, 4.0); assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);
impl<N: Scalar> Point<N, U5> where
DefaultAllocator: Allocator<N, U5>,
[src]
DefaultAllocator: Allocator<N, U5>,
pub fn new(x: N, y: N, z: N, w: N, a: N) -> Self
[src]
Initializes this point from its components.
Example
let p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0); assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);
impl<N: Scalar> Point<N, U6> where
DefaultAllocator: Allocator<N, U6>,
[src]
DefaultAllocator: Allocator<N, U6>,
pub fn new(x: N, y: N, z: N, w: N, a: N, b: N) -> Self
[src]
Initializes this point from its components.
Example
let p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0); assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);
impl<N: Scalar, D: DimName> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<U0, Output = Greater>,
[src]
DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<U0, Output = Greater>,
pub fn xx(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn xxx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
impl<N: Scalar, D: DimName> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<U1, Output = Greater>,
[src]
DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<U1, Output = Greater>,
pub fn xy(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn yx(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn yy(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn xxy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn xyx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn xyy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yxx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yxy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yyx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yyy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
impl<N: Scalar, D: DimName> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<U2, Output = Greater>,
[src]
DefaultAllocator: Allocator<N, D>,
D::Value: Cmp<U2, Output = Greater>,
pub fn xz(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn yz(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn zx(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn zy(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn zz(&self) -> Point2<N>
[src]
Builds a new point from components of self
.
pub fn xxz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn xyz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn xzx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn xzy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn xzz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yxz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yyz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yzx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yzy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn yzz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zxx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zxy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zxz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zyx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zyy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zyz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zzx(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zzy(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
pub fn zzz(&self) -> Point3<N>
[src]
Builds a new point from components of self
.
Trait Implementations
impl<N: Scalar, D: DimName> Copy for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Copy,
impl<N> AsRef<Point2<N>> for Point<N, U2> where
N: Scalar,
[src]
N: Scalar,
impl<N> AsRef<Point3<N>> for Point<N, U3> where
N: Scalar,
[src]
N: Scalar,
impl<N: Scalar + Eq, D: DimName> Eq for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Clone + Scalar, D: Clone + DimName> Clone for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn clone(&self) -> Point<N, D>
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<N: Scalar + PartialOrd, D: DimName> PartialOrd<Point<N, D>> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn partial_cmp(&self, other: &Self) -> Option<Ordering>
[src]
fn lt(&self, right: &Self) -> bool
[src]
fn le(&self, right: &Self) -> bool
[src]
fn gt(&self, right: &Self) -> bool
[src]
fn ge(&self, right: &Self) -> bool
[src]
impl<N: Scalar, D: DimName> PartialEq<Point<N, D>> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn eq(&self, right: &Self) -> bool
[src]
#[must_use]
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl<N: Scalar> From<[N; 1]> for Point<N, U1>
[src]
impl<N: Scalar> From<[N; 2]> for Point<N, U2>
[src]
impl<N: Scalar> From<[N; 3]> for Point<N, U3>
[src]
impl<N: Scalar> From<[N; 4]> for Point<N, U4>
[src]
impl<N: Scalar> From<[N; 5]> for Point<N, U5>
[src]
impl<N: Scalar> From<[N; 6]> for Point<N, U6>
[src]
impl<N> From<Point2<N>> for Point<N, U2> where
N: Scalar,
[src]
N: Scalar,
impl<N> From<Point3<N>> for Point<N, U3> where
N: Scalar,
[src]
N: Scalar,
impl<N: Scalar + Zero + One, D: DimName> From<Point<N, D>> for VectorN<N, DimNameSum<D, U1>> where
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>>,
[src]
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>>,
impl<N: Scalar, D: DimName> From<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N> Into<Point2<N>> for Point<N, U2> where
N: Scalar,
[src]
N: Scalar,
impl<N> Into<Point3<N>> for Point<N, U3> where
N: Scalar,
[src]
N: Scalar,
impl<N> AsMut<Point2<N>> for Point<N, U2> where
N: Scalar,
[src]
N: Scalar,
impl<N> AsMut<Point3<N>> for Point<N, U3> where
N: Scalar,
[src]
N: Scalar,
impl<N: Scalar> Deref for Point<N, U1> where
DefaultAllocator: Allocator<N, U1>,
[src]
DefaultAllocator: Allocator<N, U1>,
impl<N: Scalar> Deref for Point<N, U2> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: Scalar> Deref for Point<N, U3> where
DefaultAllocator: Allocator<N, U3>,
[src]
DefaultAllocator: Allocator<N, U3>,
impl<N: Scalar> Deref for Point<N, U4> where
DefaultAllocator: Allocator<N, U4>,
[src]
DefaultAllocator: Allocator<N, U4>,
impl<N: Scalar> Deref for Point<N, U5> where
DefaultAllocator: Allocator<N, U5>,
[src]
DefaultAllocator: Allocator<N, U5>,
impl<N: Scalar> Deref for Point<N, U6> where
DefaultAllocator: Allocator<N, U6>,
[src]
DefaultAllocator: Allocator<N, U6>,
type Target = XYZWAB<N>
The resulting type after dereferencing.
fn deref(&self) -> &Self::Target
[src]
impl<N: Scalar> DerefMut for Point<N, U1> where
DefaultAllocator: Allocator<N, U1>,
[src]
DefaultAllocator: Allocator<N, U1>,
impl<N: Scalar> DerefMut for Point<N, U2> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: Scalar> DerefMut for Point<N, U3> where
DefaultAllocator: Allocator<N, U3>,
[src]
DefaultAllocator: Allocator<N, U3>,
impl<N: Scalar> DerefMut for Point<N, U4> where
DefaultAllocator: Allocator<N, U4>,
[src]
DefaultAllocator: Allocator<N, U4>,
impl<N: Scalar> DerefMut for Point<N, U5> where
DefaultAllocator: Allocator<N, U5>,
[src]
DefaultAllocator: Allocator<N, U5>,
impl<N: Scalar> DerefMut for Point<N, U6> where
DefaultAllocator: Allocator<N, U6>,
[src]
DefaultAllocator: Allocator<N, U6>,
impl<N: Scalar + Hash, D: DimName + Hash> Hash for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Hash,
[src]
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Hash,
fn hash<H: Hasher>(&self, state: &mut H)
[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<N: Scalar + Display, D: DimName> Display for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Debug + Scalar, D: Debug + DimName> Debug for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<'a, 'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the +
operator.
fn add(self, right: &'b Vector<N, D2, SB>) -> Self::Output
[src]
impl<'a, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the +
operator.
fn add(self, right: Vector<N, D2, SB>) -> Self::Output
[src]
impl<'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the +
operator.
fn add(self, right: &'b Vector<N, D2, SB>) -> Self::Output
[src]
impl<N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the +
operator.
fn add(self, right: Vector<N, D2, SB>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimName> Sub<&'b Point<N, D>> for &'a Point<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
type Output = VectorSum<N, D, D>
The resulting type after applying the -
operator.
fn sub(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimName> Sub<Point<N, D>> for &'a Point<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
type Output = VectorSum<N, D, D>
The resulting type after applying the -
operator.
fn sub(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimName> Sub<&'b Point<N, D>> for Point<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
type Output = VectorSum<N, D, D>
The resulting type after applying the -
operator.
fn sub(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<N, D: DimName> Sub<Point<N, D>> for Point<N, D> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>,
type Output = VectorSum<N, D, D>
The resulting type after applying the -
operator.
fn sub(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the -
operator.
fn sub(self, right: &'b Vector<N, D2, SB>) -> Self::Output
[src]
impl<'a, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the -
operator.
fn sub(self, right: Vector<N, D2, SB>) -> Self::Output
[src]
impl<'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the -
operator.
fn sub(self, right: &'b Vector<N, D2, SB>) -> Self::Output
[src]
impl<N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedSub,
DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D1>
The resulting type after applying the -
operator.
fn sub(self, right: Vector<N, D2, SB>) -> Self::Output
[src]
impl<N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Point<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
type Output = Point<N, R1>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D2>) -> Self::Output
[src]
impl<'a, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
type Output = Point<N, R1>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D2>) -> Self::Output
[src]
impl<'b, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Point<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
type Output = Point<N, R1>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D2>) -> Self::Output
[src]
impl<'a, 'b, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
ShapeConstraint: AreMultipliable<R1, C1, D2, U1>,
type Output = Point<N, R1>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D2>) -> Self::Output
[src]
impl<N: Scalar + ClosedMul, D: DimName> Mul<N> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: N) -> Self::Output
[src]
impl<'a, N: Scalar + ClosedMul, D: DimName> Mul<N> for &'a Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: N) -> Self::Output
[src]
impl<D: DimName> Mul<Point<u8, D>> for u8 where
DefaultAllocator: Allocator<u8, D>,
[src]
DefaultAllocator: Allocator<u8, D>,
type Output = Point<u8, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<u8, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<u8, D>> for u8 where
DefaultAllocator: Allocator<u8, D>,
[src]
DefaultAllocator: Allocator<u8, D>,
type Output = Point<u8, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<u8, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<u16, D>> for u16 where
DefaultAllocator: Allocator<u16, D>,
[src]
DefaultAllocator: Allocator<u16, D>,
type Output = Point<u16, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<u16, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<u16, D>> for u16 where
DefaultAllocator: Allocator<u16, D>,
[src]
DefaultAllocator: Allocator<u16, D>,
type Output = Point<u16, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<u16, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<u32, D>> for u32 where
DefaultAllocator: Allocator<u32, D>,
[src]
DefaultAllocator: Allocator<u32, D>,
type Output = Point<u32, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<u32, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<u32, D>> for u32 where
DefaultAllocator: Allocator<u32, D>,
[src]
DefaultAllocator: Allocator<u32, D>,
type Output = Point<u32, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<u32, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<u64, D>> for u64 where
DefaultAllocator: Allocator<u64, D>,
[src]
DefaultAllocator: Allocator<u64, D>,
type Output = Point<u64, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<u64, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<u64, D>> for u64 where
DefaultAllocator: Allocator<u64, D>,
[src]
DefaultAllocator: Allocator<u64, D>,
type Output = Point<u64, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<u64, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<usize, D>> for usize where
DefaultAllocator: Allocator<usize, D>,
[src]
DefaultAllocator: Allocator<usize, D>,
type Output = Point<usize, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<usize, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<usize, D>> for usize where
DefaultAllocator: Allocator<usize, D>,
[src]
DefaultAllocator: Allocator<usize, D>,
type Output = Point<usize, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<usize, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<i8, D>> for i8 where
DefaultAllocator: Allocator<i8, D>,
[src]
DefaultAllocator: Allocator<i8, D>,
type Output = Point<i8, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<i8, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<i8, D>> for i8 where
DefaultAllocator: Allocator<i8, D>,
[src]
DefaultAllocator: Allocator<i8, D>,
type Output = Point<i8, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<i8, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<i16, D>> for i16 where
DefaultAllocator: Allocator<i16, D>,
[src]
DefaultAllocator: Allocator<i16, D>,
type Output = Point<i16, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<i16, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<i16, D>> for i16 where
DefaultAllocator: Allocator<i16, D>,
[src]
DefaultAllocator: Allocator<i16, D>,
type Output = Point<i16, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<i16, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<i32, D>> for i32 where
DefaultAllocator: Allocator<i32, D>,
[src]
DefaultAllocator: Allocator<i32, D>,
type Output = Point<i32, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<i32, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<i32, D>> for i32 where
DefaultAllocator: Allocator<i32, D>,
[src]
DefaultAllocator: Allocator<i32, D>,
type Output = Point<i32, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<i32, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<i64, D>> for i64 where
DefaultAllocator: Allocator<i64, D>,
[src]
DefaultAllocator: Allocator<i64, D>,
type Output = Point<i64, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<i64, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<i64, D>> for i64 where
DefaultAllocator: Allocator<i64, D>,
[src]
DefaultAllocator: Allocator<i64, D>,
type Output = Point<i64, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<i64, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<isize, D>> for isize where
DefaultAllocator: Allocator<isize, D>,
[src]
DefaultAllocator: Allocator<isize, D>,
type Output = Point<isize, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<isize, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<isize, D>> for isize where
DefaultAllocator: Allocator<isize, D>,
[src]
DefaultAllocator: Allocator<isize, D>,
type Output = Point<isize, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<isize, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<f32, D>> for f32 where
DefaultAllocator: Allocator<f32, D>,
[src]
DefaultAllocator: Allocator<f32, D>,
type Output = Point<f32, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<f32, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<f32, D>> for f32 where
DefaultAllocator: Allocator<f32, D>,
[src]
DefaultAllocator: Allocator<f32, D>,
type Output = Point<f32, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<f32, D>) -> Self::Output
[src]
impl<D: DimName> Mul<Point<f64, D>> for f64 where
DefaultAllocator: Allocator<f64, D>,
[src]
DefaultAllocator: Allocator<f64, D>,
type Output = Point<f64, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<f64, D>) -> Self::Output
[src]
impl<'b, D: DimName> Mul<&'b Point<f64, D>> for f64 where
DefaultAllocator: Allocator<f64, D>,
[src]
DefaultAllocator: Allocator<f64, D>,
type Output = Point<f64, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<f64, D>) -> Self::Output
[src]
impl<N, D: DimName> Mul<Point<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Point<N, U3>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Point3<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Point3<N>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Point<N, U3>> for &'a UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Point3<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: Point3<N>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Point<N, U3>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Point3<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Point3<N>) -> Self::Output
[src]
impl<N: RealField> Mul<Point<N, U3>> for UnitQuaternion<N> where
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
[src]
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>,
type Output = Point3<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: Point3<N>) -> Self::Output
[src]
impl<N: RealField> Mul<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Point2<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: Point2<N>) -> Self::Output
[src]
impl<'a, N: RealField> Mul<Point<N, U2>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Point2<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: Point2<N>) -> Self::Output
[src]
impl<'b, N: RealField> Mul<&'b Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Point2<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Point2<N>) -> Self::Output
[src]
impl<'a, 'b, N: RealField> Mul<&'b Point<N, U2>> for &'a UnitComplex<N> where
DefaultAllocator: Allocator<N, U2, U1>,
[src]
DefaultAllocator: Allocator<N, U2, U1>,
type Output = Point2<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Point2<N>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<N, D: DimName> Mul<Point<N, D>> for Translation<N, D> where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
[src]
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: Point<N, D>) -> Self::Output
[src]
impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Similarity<N, D, R> where
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: AlgaRotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Point<N, D>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, rhs: Point<N, D>) -> Self::Output
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, rhs: Point<N, D>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Point<N, D>) -> Self::Output
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
[src]
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
DefaultAllocator: Allocator<N, D, D>,
type Output = Point<N, D>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b Point<N, D>) -> Self::Output
[src]
impl<N: Scalar + ClosedDiv, D: DimName> Div<N> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the /
operator.
fn div(self, right: N) -> Self::Output
[src]
impl<'a, N: Scalar + ClosedDiv, D: DimName> Div<N> for &'a Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the /
operator.
fn div(self, right: N) -> Self::Output
[src]
impl<N: Scalar + ClosedNeg, D: DimName> Neg for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Output = Self
The resulting type after applying the -
operator.
fn neg(self) -> Self::Output
[src]
impl<'a, N: Scalar + ClosedNeg, D: DimName> Neg for &'a Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Output = Point<N, D>
The resulting type after applying the -
operator.
fn neg(self) -> Self::Output
[src]
impl<'b, N, D1: DimName, D2: Dim, SB> AddAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedAdd,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
[src]
N: Scalar + ClosedAdd,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
fn add_assign(&mut self, right: &'b Vector<N, D2, SB>)
[src]
impl<N, D1: DimName, D2: Dim, SB> AddAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedAdd,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
[src]
N: Scalar + ClosedAdd,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
fn add_assign(&mut self, right: Vector<N, D2, SB>)
[src]
impl<'b, N, D1: DimName, D2: Dim, SB> SubAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedSub,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
[src]
N: Scalar + ClosedSub,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
fn sub_assign(&mut self, right: &'b Vector<N, D2, SB>)
[src]
impl<N, D1: DimName, D2: Dim, SB> SubAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
N: Scalar + ClosedSub,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
[src]
N: Scalar + ClosedSub,
SB: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
ShapeConstraint: SameNumberOfRows<D1, D2>,
fn sub_assign(&mut self, right: Vector<N, D2, SB>)
[src]
impl<N: Scalar + ClosedMul, D: DimName> MulAssign<N> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn mul_assign(&mut self, right: N)
[src]
impl<N: Scalar + ClosedDiv, D: DimName> DivAssign<N> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn div_assign(&mut self, right: N)
[src]
impl<N: Scalar, D: DimName> Index<usize> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Scalar, D: DimName> IndexMut<usize> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Scalar, D: DimName> Serialize for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Serialize,
[src]
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Serialize,
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>,
[src]
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>,
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where
Des: Deserializer<'a>,
[src]
Des: Deserializer<'a>,
impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq<Point<N, D>> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
The inverse of ApproxEq::abs_diff_eq
.
impl<N: Scalar + RelativeEq, D: DimName> RelativeEq<Point<N, D>> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_relative() -> Self::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
The inverse of ApproxEq::relative_eq
.
impl<N: Scalar + UlpsEq, D: DimName> UlpsEq<Point<N, D>> for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
[src]
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
fn default_max_ulps() -> u32
[src]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool
[src]
The inverse of ApproxEq::ulps_eq
.
impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Scalar, D: DimName> Distribution<Point<N, D>> for Standard where
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N>,
[src]
DefaultAllocator: Allocator<N, D>,
Standard: Distribution<N>,
fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Point<N, D>
[src]
fn sample_iter<R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
R: Rng,
[src]
R: Rng,
Create an iterator that generates random values of T
, using rng
as the source of randomness. Read more
impl<N, D: DimName> JoinSemilattice for Point<N, D> where
N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, D>,
[src]
N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, D>,
impl<N1, N2, D> SubsetOf<Point<N2, D>> for Point<N1, D> where
D: DimName,
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N2, D> + Allocator<N1, D>,
[src]
D: DimName,
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N2, D> + Allocator<N1, D>,
fn to_superset(&self) -> Point<N2, D>
[src]
fn is_in_subset(m: &Point<N2, D>) -> bool
[src]
unsafe fn from_superset_unchecked(m: &Point<N2, D>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, U1>>::Buffer>> for Point<N1, D> where
D: DimNameAdd<U1>,
N1: Scalar,
N2: Scalar + Zero + One + ClosedDiv + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>> + Allocator<N2, D>,
[src]
D: DimNameAdd<U1>,
N1: Scalar,
N2: Scalar + Zero + One + ClosedDiv + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N1, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>> + Allocator<N2, D>,
fn to_superset(&self) -> VectorN<N2, DimNameSum<D, U1>>
[src]
fn is_in_subset(v: &VectorN<N2, DimNameSum<D, U1>>) -> bool
[src]
unsafe fn from_superset_unchecked(v: &VectorN<N2, DimNameSum<D, U1>>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more
impl<N, D: DimName> MeetSemilattice for Point<N, D> where
N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, D>,
[src]
N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, D>,
impl<N, D: DimName> Lattice for Point<N, D> where
N: Scalar + Lattice,
DefaultAllocator: Allocator<N, D>,
[src]
N: Scalar + Lattice,
DefaultAllocator: Allocator<N, D>,
fn meet_join(&self, other: &Self) -> (Self, Self)
[src]
fn partial_min(&'a self, other: &'a Self) -> Option<&'a Self>
[src]
Return the minimum of self
and other
if they are comparable.
fn partial_max(&'a self, other: &'a Self) -> Option<&'a Self>
[src]
Return the maximum of self
and other
if they are comparable.
fn partial_sort2(&'a self, other: &'a Self) -> Option<(&'a Self, &'a Self)>
[src]
Sorts two values in increasing order using a partial ordering.
fn partial_clamp(&'a self, min: &'a Self, max: &'a Self) -> Option<&'a Self>
[src]
Clamp value
between min
and max
. Returns None
if value
is not comparable to min
or max
. Read more
impl<N: RealField, D: DimName> DirectIsometry<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
impl<N: RealField> DirectIsometry<Point<N, U3>> for UnitQuaternion<N>
[src]
impl<N: RealField> DirectIsometry<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: RealField, D: DimName> DirectIsometry<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName> OrthogonalTransformation<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
impl<N: RealField> OrthogonalTransformation<Point<N, U3>> for UnitQuaternion<N>
[src]
impl<N: RealField> OrthogonalTransformation<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: RealField, D: DimName> EuclideanSpace for Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Coordinates = VectorN<N, D>
The underlying finite vector space.
type RealField = N
The underlying reals.
fn origin() -> Self
[src]
fn coordinates(&self) -> Self::Coordinates
[src]
fn from_coordinates(coords: Self::Coordinates) -> Self
[src]
fn scale_by(&self, n: N) -> Self
[src]
fn distance_squared(&self, b: &Self) -> Self::RealField
[src]
The distance between two points.
fn distance(&self, b: &Self) -> Self::RealField
[src]
The distance between two points.
impl<N: RealField, D: DimNameSub<U1>> Transformation<Point<N, <D as DimNameSub<U1>>::Output>> for MatrixN<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>> + Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>,
fn transform_vector(
&self,
v: &VectorN<N, DimNameDiff<D, U1>>
) -> VectorN<N, DimNameDiff<D, U1>>
[src]
&self,
v: &VectorN<N, DimNameDiff<D, U1>>
) -> VectorN<N, DimNameDiff<D, U1>>
fn transform_point(
&self,
pt: &Point<N, DimNameDiff<D, U1>>
) -> Point<N, DimNameDiff<D, U1>>
[src]
&self,
pt: &Point<N, DimNameDiff<D, U1>>
) -> Point<N, DimNameDiff<D, U1>>
impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField> Transformation<Point<N, U3>> for UnitQuaternion<N>
[src]
fn transform_point(&self, pt: &Point3<N>) -> Point3<N>
[src]
fn transform_vector(&self, v: &Vector3<N>) -> Vector3<N>
[src]
impl<N: RealField> Transformation<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
fn transform_point(&self, pt: &Point2<N>) -> Point2<N>
[src]
fn transform_vector(&self, v: &Vector2<N>) -> Vector2<N>
[src]
impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C> where
N: RealField,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
[src]
N: RealField,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName> Rotation<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
Subgroups of the n-dimensional rotation group SO(n)
.
fn powf(&self, _: N) -> Option<Self>
[src]
fn rotation_between(_: &VectorN<N, D>, _: &VectorN<N, D>) -> Option<Self>
[src]
fn scaled_rotation_between(
_: &VectorN<N, D>,
_: &VectorN<N, D>,
_: N
) -> Option<Self>
[src]
_: &VectorN<N, D>,
_: &VectorN<N, D>,
_: N
) -> Option<Self>
impl<N: RealField> Rotation<Point<N, U3>> for UnitQuaternion<N>
[src]
fn powf(&self, n: N) -> Option<Self>
[src]
fn rotation_between(a: &Vector3<N>, b: &Vector3<N>) -> Option<Self>
[src]
fn scaled_rotation_between(a: &Vector3<N>, b: &Vector3<N>, s: N) -> Option<Self>
[src]
impl<N: RealField> Rotation<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
fn powf(&self, n: N) -> Option<Self>
[src]
fn rotation_between(a: &Vector2<N>, b: &Vector2<N>) -> Option<Self>
[src]
fn scaled_rotation_between(a: &Vector2<N>, b: &Vector2<N>, s: N) -> Option<Self>
[src]
impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
type Rotation = Self
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Id
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Id, Self, Id, Self)
[src]
fn append_translation(&self, _: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, _: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>
[src]
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<N: RealField> AffineTransformation<Point<N, U3>> for UnitQuaternion<N>
[src]
type Rotation = Self
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Id
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Id, Self, Id, Self)
[src]
fn append_translation(&self, _: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, _: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>
[src]
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<N: RealField> AffineTransformation<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
type Rotation = Self
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Id
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Id, Self, Id, Self)
[src]
fn append_translation(&self, _: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, _: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>
[src]
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Rotation = Id
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Self
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Self, Id, Id, Id)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, _: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, _: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>
[src]
Appends to this similarity a rotation centered at the point p
, i.e., this point is left invariant. Read more
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Rotation = R
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Translation<N, D>
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Self::Translation, R, Id, R)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
[src]
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type NonUniformScaling = N
Type of the non-uniform scaling to be applied.
type Rotation = R
Type of the first rotation to be applied.
type Translation = Translation<N, D>
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Translation<N, D>, R, N, R)
[src]
fn append_translation(&self, t: &Self::Translation) -> Self
[src]
fn prepend_translation(&self, t: &Self::Translation) -> Self
[src]
fn append_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self
[src]
fn append_scaling(&self, s: &Self::NonUniformScaling) -> Self
[src]
fn prepend_scaling(&self, s: &Self::NonUniformScaling) -> Self
[src]
fn append_rotation_wrt_point(
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
[src]
&self,
r: &Self::Rotation,
p: &Point<N, D>
) -> Option<Self>
impl<N: RealField, D: DimName> Isometry<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
impl<N: RealField> Isometry<Point<N, U3>> for UnitQuaternion<N>
[src]
impl<N: RealField> Isometry<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
impl<N: RealField, D: DimName> Isometry<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName, R> Isometry<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
impl<N: RealField, D: DimName> Translation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
Subgroups of the n-dimensional translation group T(n)
.
fn to_vector(&self) -> VectorN<N, D>
[src]
fn from_vector(v: VectorN<N, D>) -> Option<Self>
[src]
fn powf(&self, n: N) -> Option<Self>
[src]
fn translation_between(a: &Point<N, D>, b: &Point<N, D>) -> Option<Self>
[src]
impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Id
[src]
fn rotation(&self) -> Self
[src]
fn scaling(&self) -> Id
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField> Similarity<Point<N, U3>> for UnitQuaternion<N>
[src]
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Id
[src]
fn rotation(&self) -> Self
[src]
fn scaling(&self) -> Id
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField> Similarity<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Id
[src]
fn rotation(&self) -> Self
[src]
fn scaling(&self) -> Id
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Self
[src]
fn rotation(&self) -> Id
[src]
fn scaling(&self) -> Id
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Translation<N, D>
[src]
fn rotation(&self) -> R
[src]
fn scaling(&self) -> Id
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
type Scaling = N
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Translation<N, D>
[src]
fn rotation(&self) -> R
[src]
fn scaling(&self) -> N
[src]
fn translate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E
[src]
Applies this transformation's pure scaling part to a point.
fn rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure rotational part to a vector.
fn scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E
[src]
Applies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]
&self,
pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
Applies this transformation inverse's pure scaling part to a vector.
impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField> ProjectiveTransformation<Point<N, U3>> for UnitQuaternion<N>
[src]
fn inverse_transform_point(&self, pt: &Point3<N>) -> Point3<N>
[src]
fn inverse_transform_vector(&self, v: &Vector3<N>) -> Vector3<N>
[src]
impl<N: RealField> ProjectiveTransformation<Point<N, U2>> for UnitComplex<N> where
DefaultAllocator: Allocator<N, U2>,
[src]
DefaultAllocator: Allocator<N, U2>,
fn inverse_transform_point(&self, pt: &Point2<N>) -> Point2<N>
[src]
fn inverse_transform_vector(&self, v: &Vector2<N>) -> Vector2<N>
[src]
impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Translation<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Similarity<N, D, R> where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
[src]
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C> where
N: RealField,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
[src]
N: RealField,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
impl<N: Scalar + Field, D: DimName> AffineSpace for Point<N, D> where
N: Scalar + Field,
DefaultAllocator: Allocator<N, D>,
[src]
N: Scalar + Field,
DefaultAllocator: Allocator<N, D>,
type Translation = VectorN<N, D>
The associated vector space.
fn translate_by(&self, t: &Self::Translation) -> Self
[src]
Same as *self + *t
. Applies the additive group action of this affine space's associated vector space on self
. Read more
fn subtract(&self, right: &Self) -> Self::Translation
[src]
Same as *self - *other
. Returns the unique element v
of the associated vector space such that self = right + v
. Read more
Auto Trait Implementations
impl<N, D> !Unpin for Point<N, D>
impl<N, D> !Sync for Point<N, D>
impl<N, D> !Send for Point<N, D>
impl<N, D> !UnwindSafe for Point<N, D>
impl<N, D> !RefUnwindSafe for Point<N, D>
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<T> ClosedNeg for T where
T: Neg<Output = T>,
[src]
T: Neg<Output = T>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
[src]
fn is_in_subset(&self) -> bool
[src]
unsafe fn to_subset_unchecked(&self) -> SS
[src]
fn from_subset(element: &SS) -> SP
[src]
impl<T, Right> ClosedAdd<Right> for T where
T: Add<Right, Output = T> + AddAssign<Right>,
[src]
T: Add<Right, Output = T> + AddAssign<Right>,
impl<T, Right> ClosedSub<Right> for T where
T: Sub<Right, Output = T> + SubAssign<Right>,
[src]
T: Sub<Right, Output = T> + SubAssign<Right>,
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,