[][src]Struct euclid::TypedRotation3D

#[repr(C)]
pub struct TypedRotation3D<T, Src, Dst> {
    pub i: T,
    pub j: T,
    pub k: T,
    pub r: T,
    // some fields omitted
}

A transform that can represent rotations in 3d, represented as a quaternion.

Most methods expect the quaternion to be normalized. When in doubt, use unit_quaternion instead of quaternion to create a rotation as the former will ensure that its result is normalized.

Some people use the x, y, z, w (or w, x, y, z) notations. The equivalence is as follows: x -> i, y -> j, z -> k, w -> r. The memory layout of this type corresponds to the x, y, z, w notation

Fields

i: T

Component multiplied by the imaginary number i.

j: T

Component multiplied by the imaginary number j.

k: T

Component multiplied by the imaginary number k.

r: T

The real part.

Methods

impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>[src]

pub fn quaternion(a: T, b: T, c: T, r: T) -> Self[src]

Creates a rotation around from a quaternion representation.

The parameters are a, b, c and r compose the quaternion a*i + b*j + c*k + r where a, b and c describe the vector part and the last parameter r is the real part.

The resulting quaternion is not necessarily normalized. See unit_quaternion.

impl<T, Src, Dst> TypedRotation3D<T, Src, Dst> where
    T: Copy
[src]

pub fn vector_part(&self) -> Vector3D<T>[src]

Returns the vector part (i, j, k) of this quaternion.

impl<T, Src, Dst> TypedRotation3D<T, Src, Dst> where
    T: Float
[src]

pub fn identity() -> Self[src]

Creates the identity rotation.

pub fn unit_quaternion(i: T, j: T, k: T, r: T) -> Self[src]

Creates a rotation around from a quaternion representation and normalizes it.

The parameters are a, b, c and r compose the quaternion a*i + b*j + c*k + r before normalization, where a, b and c describe the vector part and the last parameter r is the real part.

pub fn around_axis(axis: TypedVector3D<T, Src>, angle: Angle<T>) -> Self[src]

Creates a rotation around a given axis.

pub fn around_x(angle: Angle<T>) -> Self[src]

Creates a rotation around the x axis.

pub fn around_y(angle: Angle<T>) -> Self[src]

Creates a rotation around the y axis.

pub fn around_z(angle: Angle<T>) -> Self[src]

Creates a rotation around the z axis.

pub fn euler(roll: Angle<T>, pitch: Angle<T>, yaw: Angle<T>) -> Self[src]

Creates a rotation from Euler angles.

The rotations are applied in roll then pitch then yaw order.

  • Roll (also called bank) is a rotation around the x axis.
  • Pitch (also called bearing) is a rotation around the y axis.
  • Yaw (also called heading) is a rotation around the z axis.

pub fn inverse(&self) -> TypedRotation3D<T, Dst, Src>[src]

Returns the inverse of this rotation.

pub fn norm(&self) -> T[src]

Computes the norm of this quaternion

pub fn square_norm(&self) -> T[src]

pub fn normalize(&self) -> Self[src]

Returns a unit quaternion from this one.

pub fn is_normalized(&self) -> bool where
    T: ApproxEq<T>, 
[src]

pub fn slerp(&self, other: &Self, t: T) -> Self where
    T: ApproxEq<T>, 
[src]

Spherical linear interpolation between this rotation and another rotation.

t is expected to be between zero and one.

pub fn lerp(&self, other: &Self, t: T) -> Self[src]

Basic Linear interpolation between this rotation and another rotation.

t is expected to be between zero and one.

pub fn rotate_point3d(
    &self,
    point: &TypedPoint3D<T, Src>
) -> TypedPoint3D<T, Dst> where
    T: ApproxEq<T>, 
[src]

Returns the given 3d point transformed by this rotation.

The input point must be use the unit Src, and the returned point has the unit Dst.

pub fn rotate_point2d(
    &self,
    point: &TypedPoint2D<T, Src>
) -> TypedPoint2D<T, Dst> where
    T: ApproxEq<T>, 
[src]

Returns the given 2d point transformed by this rotation then projected on the xy plane.

The input point must be use the unit Src, and the returned point has the unit Dst.

pub fn rotate_vector3d(
    &self,
    vector: &TypedVector3D<T, Src>
) -> TypedVector3D<T, Dst> where
    T: ApproxEq<T>, 
[src]

Returns the given 3d vector transformed by this rotation.

The input vector must be use the unit Src, and the returned point has the unit Dst.

pub fn rotate_vector2d(
    &self,
    vector: &TypedVector2D<T, Src>
) -> TypedVector2D<T, Dst> where
    T: ApproxEq<T>, 
[src]

Returns the given 2d vector transformed by this rotation then projected on the xy plane.

The input vector must be use the unit Src, and the returned point has the unit Dst.

pub fn to_transform(&self) -> TypedTransform3D<T, Src, Dst> where
    T: ApproxEq<T>, 
[src]

Returns the matrix representation of this rotation.

pub fn pre_rotate<NewSrc>(
    &self,
    other: &TypedRotation3D<T, NewSrc, Src>
) -> TypedRotation3D<T, NewSrc, Dst> where
    T: ApproxEq<T>, 
[src]

Returns a rotation representing the other rotation followed by this rotation.

pub fn post_rotate<NewDst>(
    &self,
    other: &TypedRotation3D<T, Dst, NewDst>
) -> TypedRotation3D<T, Src, NewDst> where
    T: ApproxEq<T>, 
[src]

Returns a rotation representing this rotation followed by the other rotation.

Trait Implementations

impl<T, Src, Dst> ApproxEq<T> for TypedRotation3D<T, Src, Dst> where
    T: Copy + Neg<Output = T> + ApproxEq<T>, 
[src]

impl<T, Src, Dst> PartialEq<TypedRotation3D<T, Src, Dst>> for TypedRotation3D<T, Src, Dst> where
    T: PartialEq
[src]

#[must_use] fn ne(&self, other: &Rhs) -> bool1.0.0[src]

This method tests for !=.

impl<T, Src, Dst> Eq for TypedRotation3D<T, Src, Dst> where
    T: Eq
[src]

impl<T, Src, Dst> Hash for TypedRotation3D<T, Src, Dst> where
    T: Hash
[src]

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<T: Display, Src, Dst> Display for TypedRotation3D<T, Src, Dst>[src]

impl<T: Debug, Src, Dst> Debug for TypedRotation3D<T, Src, Dst>[src]

impl<T, Src, Dst> Copy for TypedRotation3D<T, Src, Dst> where
    T: Copy
[src]

impl<T: Float + ApproxEq<T>, Src, Dst> From<TypedRotation3D<T, Src, Dst>> for TypedRigidTransform3D<T, Src, Dst>[src]

impl<T, Src, Dst> Clone for TypedRotation3D<T, Src, Dst> where
    T: Clone
[src]

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

Auto Trait Implementations

impl<T, Src, Dst> Unpin for TypedRotation3D<T, Src, Dst> where
    Dst: Unpin,
    Src: Unpin,
    T: Unpin

impl<T, Src, Dst> Send for TypedRotation3D<T, Src, Dst> where
    Dst: Send,
    Src: Send,
    T: Send

impl<T, Src, Dst> Sync for TypedRotation3D<T, Src, Dst> where
    Dst: Sync,
    Src: Sync,
    T: Sync

impl<T, Src, Dst> UnwindSafe for TypedRotation3D<T, Src, Dst> where
    Dst: UnwindSafe,
    Src: UnwindSafe,
    T: UnwindSafe

impl<T, Src, Dst> RefUnwindSafe for TypedRotation3D<T, Src, Dst> where
    Dst: RefUnwindSafe,
    Src: RefUnwindSafe,
    T: RefUnwindSafe

Blanket Implementations

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]