1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
//! Local transform component. use crate::{ alga::general::SubsetOf, ecs::prelude::{Component, DenseVecStorage, FlaggedStorage}, math::{ self as na, Isometry3, Matrix4, Quaternion, RealField, Translation3, Unit, UnitQuaternion, Vector3, }, }; use serde::{Deserialize, Serialize}; /// Local position, rotation, and scale (from parent if it exists). /// /// Used for rendering position and orientation. /// /// The transforms are preformed in this order: scale, then rotation, then translation. #[derive(Getters, Setters, MutGetters, Clone, Debug, PartialEq, Deserialize, Serialize)] #[serde(from = "TransformValues", into = "TransformValues")] pub struct Transform { /// Translation + rotation value #[get = "pub"] #[set = "pub"] #[get_mut = "pub"] isometry: Isometry3<f32>, /// Scale vector #[get = "pub"] #[get_mut = "pub"] scale: Vector3<f32>, /// The global transformation matrix. #[get = "pub"] pub(crate) global_matrix: Matrix4<f32>, } impl Transform { /// Create a new Transform. /// /// # Examples /// /// ```rust /// # use amethyst_core::transform::Transform; /// # use amethyst_core::math::{Isometry3, Translation3, UnitQuaternion, Vector3}; /// let position = Translation3::new(0.0, 2.0, 4.0); /// let rotation = UnitQuaternion::from_euler_angles(0.4, 0.2, 0.0); /// let scale = Vector3::new(1.0, 1.0, 1.0); /// /// let t = Transform::new(position, rotation, scale); /// /// assert_eq!(t.translation().y, 2.0); /// ``` pub fn new<N: RealField + SubsetOf<f32>>( position: Translation3<N>, rotation: UnitQuaternion<N>, scale: Vector3<N>, ) -> Self { Transform { isometry: Isometry3::from_parts(na::convert(position), na::convert(rotation)), scale: na::convert(scale), global_matrix: na::one(), } } /// Set the scaling factor of this transform. pub fn set_scale<N: RealField + SubsetOf<f32>>(&mut self, scale: Vector3<N>) { self.scale = na::convert(scale); } /// Makes the entity point towards `target`. /// /// `up` says which direction the entity should be 'rolled' to once it is pointing at /// `position`. If `up` is parallel to the direction the entity is looking, the result will be /// garbage. /// /// This function only works with respect to the coordinate system of its parent, so when used /// with an object that's not a sibling it will not do what you expect. /// /// # Examples /// /// ```rust /// # use amethyst_core::transform::Transform; /// # use amethyst_core::math::{UnitQuaternion, Quaternion, Vector3}; /// let mut t = Transform::default(); /// // No rotation by default /// assert_eq!(*t.rotation().quaternion(), Quaternion::identity()); /// // look up with up pointing backwards /// t.face_towards( /// Vector3::new(0.0, 1.0, 0.0), /// Vector3::new(0.0, 0.0, 1.0), /// ); /// // our rotation should match the angle from straight ahead to straight up /// let rotation = UnitQuaternion::rotation_between( /// &Vector3::new(0.0, 1.0, 0.0), /// &Vector3::new(0.0, 0.0, 1.0), /// ).unwrap(); /// assert_eq!(*t.rotation(), rotation); /// // now if we move forwards by 1.0, we'll end up at the point we are facing /// // (modulo some floating point error) /// t.move_forward(1.0); /// assert!((*t.translation() - Vector3::new(0.0, 1.0, 0.0)).magnitude() <= 0.0001); /// ``` #[inline] pub fn face_towards<N: RealField + SubsetOf<f32>>( &mut self, target: Vector3<N>, up: Vector3<N>, ) -> &mut Self { self.isometry.rotation = UnitQuaternion::face_towards( &(self.isometry.translation.vector - na::convert::<_, Vector3<f32>>(target)), &na::convert::<_, Vector3<f32>>(up), ); self } /// Returns the local object matrix for the transform. #[inline] pub fn matrix(&self) -> Matrix4<f32> { self.isometry .to_homogeneous() .prepend_nonuniform_scaling(&self.scale) } /// Returns a reference to the translation vector. #[inline] pub fn translation(&self) -> &Vector3<f32> { &self.isometry.translation.vector } /// Returns a mutable reference to the translation vector. #[inline] pub fn translation_mut(&mut self) -> &mut Vector3<f32> { &mut self.isometry.translation.vector } /// Returns a reference to the rotation quaternion. #[inline] pub fn rotation(&self) -> &UnitQuaternion<f32> { &self.isometry.rotation } /// Returns a mutable reference to the rotation quaternion. #[inline] pub fn rotation_mut(&mut self) -> &mut UnitQuaternion<f32> { &mut self.isometry.rotation } /// Move relatively to its current position, but the parent's (or /// global, if no parent exists) orientation. /// /// For example, if the object is rotated 45 degrees about its Y axis, /// then you *prepend* a translation along the Z axis, it will still /// move along the parent's Z axis rather than its local Z axis (which /// is rotated 45 degrees). #[inline] pub fn prepend_translation(&mut self, translation: Vector3<f32>) -> &mut Self { self.isometry.translation.vector += translation; self } /// Move relatively to its current position and orientation. /// /// For example, if the object is rotated 45 degrees about its Y axis, /// then you append a translation along the Z axis, that Z axis is now /// rotated 45 degrees, and so the appended translation will go along that /// rotated Z axis. /// /// Equivalent to rotating the translation by the transform's current /// rotation before applying. #[inline] pub fn append_translation(&mut self, translation: Vector3<f32>) -> &mut Self { self.isometry.translation.vector += self.isometry.rotation * translation; self } /// Move a distance along an axis relative to the parent's orientation /// (or the global orientation if no parent exists). /// /// For example, if the object is rotated 45 degrees about its Y axis, /// then you *prepend* a translation along the Z axis, it will still /// move along the parent's Z axis rather than its local Z axis (which /// is rotated 45 degrees). #[inline] pub fn prepend_translation_along( &mut self, direction: Unit<Vector3<f32>>, distance: f32, ) -> &mut Self { self.isometry.translation.vector += direction.as_ref() * distance; self } /// Move a distance along an axis relative to the local orientation. #[inline] pub fn append_translation_along( &mut self, direction: Unit<Vector3<f32>>, distance: f32, ) -> &mut Self { self.isometry.translation.vector += self.isometry.rotation * direction.as_ref() * distance; self } /// Move forward relative to current position and orientation. #[inline] pub fn move_forward(&mut self, amount: f32) -> &mut Self { // sign is reversed because z comes towards us self.append_translation(Vector3::new(0.0, 0.0, -amount)) } /// Move backward relative to current position and orientation. #[inline] pub fn move_backward(&mut self, amount: f32) -> &mut Self { self.append_translation(Vector3::new(0.0, 0.0, amount)) } /// Move right relative to current position and orientation. #[inline] pub fn move_right(&mut self, amount: f32) -> &mut Self { self.append_translation(Vector3::new(amount, 0.0, 0.0)) } /// Move left relative to current position and orientation. #[inline] pub fn move_left(&mut self, amount: f32) -> &mut Self { self.append_translation(Vector3::new(-amount, 0.0, 0.0)) } /// Move up relative to current position and orientation. #[inline] pub fn move_up(&mut self, amount: f32) -> &mut Self { self.append_translation(Vector3::new(0.0, amount, 0.0)) } /// Move down relative to current position and orientation. #[inline] pub fn move_down(&mut self, amount: f32) -> &mut Self { self.append_translation(Vector3::new(0.0, -amount, 0.0)) } /// Adds the specified amount to the translation vector's x component. /// i.e. move relative to the parent's (or global, if no parent exists) /// x axis. #[inline] pub fn prepend_translation_x(&mut self, amount: f32) -> &mut Self { self.isometry.translation.vector.x += amount; self } /// Adds the specified amount to the translation vector's y component. /// i.e. move relative to the parent's (or global, if no parent exists) /// y axis. #[inline] pub fn prepend_translation_y(&mut self, amount: f32) -> &mut Self { self.isometry.translation.vector.y += amount; self } /// Adds the specified amount to the translation vector's z component. /// i.e. move relative to the parent's (or global, if no parent exists) /// z axis. #[inline] pub fn prepend_translation_z(&mut self, amount: f32) -> &mut Self { self.isometry.translation.vector.z += amount; self } /// Sets the translation vector's x component to the specified value. #[inline] pub fn set_translation_x(&mut self, value: f32) -> &mut Self { self.isometry.translation.vector.x = value; self } /// Sets the translation vector's y component to the specified value. #[inline] pub fn set_translation_y(&mut self, value: f32) -> &mut Self { self.isometry.translation.vector.y = value; self } /// Sets the translation vector's z component to the specified value. #[inline] pub fn set_translation_z(&mut self, value: f32) -> &mut Self { self.isometry.translation.vector.z = value; self } /// Premultiply a rotation about the x axis, i.e. perform a rotation about /// the parent's x axis (or the global x axis if no parent exists). /// /// `delta_angle` is specified in radians. #[inline] pub fn prepend_rotation_x_axis(&mut self, delta_angle: f32) -> &mut Self { self.prepend_rotation(Vector3::x_axis(), delta_angle) } /// Postmultiply a rotation about the x axis, i.e. perform a rotation about /// the *local* x-axis, including any prior rotations that have been performed. /// /// `delta_angle` is specified in radians. #[inline] pub fn append_rotation_x_axis(&mut self, delta_angle: f32) -> &mut Self { self.append_rotation(Vector3::x_axis(), delta_angle) } /// Set the rotation about the parent's x axis (or the global x axis /// if no parent exists). This will *clear any other rotations that have /// previously been performed*! /// /// `angle` is specified in radians. #[inline] pub fn set_rotation_x_axis(&mut self, angle: f32) -> &mut Self { self.set_rotation_euler(angle, 0.0, 0.0) } /// Premultiply a rotation about the y axis, i.e. perform a rotation about /// the parent's y axis (or the global y axis if no parent exists). /// /// `delta_angle` is specified in radians. #[inline] pub fn prepend_rotation_y_axis(&mut self, delta_angle: f32) -> &mut Self { self.prepend_rotation(Vector3::y_axis(), delta_angle) } /// Postmultiply a rotation about the y axis, i.e. perform a rotation about /// the *local* y-axis, including any prior rotations that have been performed. /// /// `delta_angle` is specified in radians. #[inline] pub fn append_rotation_y_axis(&mut self, delta_angle: f32) -> &mut Self { self.append_rotation(Vector3::y_axis(), delta_angle) } /// Set the rotation about the parent's y axis (or the global y axis /// if no parent exists). This will *clear any other rotations that have /// previously been performed*! /// /// `angle` is specified in radians. #[inline] pub fn set_rotation_y_axis(&mut self, angle: f32) -> &mut Self { self.set_rotation_euler(0.0, angle, 0.0) } /// Premultiply a rotation about the z axis, i.e. perform a rotation about /// the parent's z axis (or the global z axis if no parent exists). /// /// `delta_angle` is specified in radians. #[inline] pub fn prepend_rotation_z_axis(&mut self, delta_angle: f32) -> &mut Self { self.prepend_rotation(-Vector3::z_axis(), delta_angle) } /// Postmultiply a rotation about the z axis, i.e. perform a rotation about /// the *local* z-axis, including any prior rotations that have been performed. /// /// `delta_angle` is specified in radians. #[inline] pub fn append_rotation_z_axis(&mut self, delta_angle: f32) -> &mut Self { self.append_rotation(-Vector3::z_axis(), delta_angle) } /// Set the rotation about the parent's z axis (or the global z axis /// if no parent exists). This will *clear any other rotations that have /// previously been performed*! /// /// `angle` is specified in radians. #[inline] pub fn set_rotation_z_axis(&mut self, angle: f32) -> &mut Self { self.set_rotation_euler(0.0, 0.0, angle) } /// Perform a rotation about the axis perpendicular to X and Y, /// i.e. the most common way to rotate an object in a 2d game. /// /// `delta_angle` is specified in radians. #[inline] pub fn rotate_2d(&mut self, delta_angle: f32) -> &mut Self { self.prepend_rotation_z_axis(delta_angle) } /// Set the rotation about the axis perpendicular to X and Y, /// i.e. the most common way to rotate an object in a 2d game. /// /// `angle` is specified in radians. #[inline] pub fn set_rotation_2d(&mut self, angle: f32) -> &mut Self { self.set_rotation_euler(0.0, 0.0, angle) } /// Premultiply a rotation, i.e. rotate relatively to the parent's orientation /// (or the global orientation if no parent exists), about a specified axis. /// /// `delta_angle` is specified in radians. #[inline] pub fn prepend_rotation(&mut self, axis: Unit<Vector3<f32>>, angle: f32) -> &mut Self { let q = UnitQuaternion::from_axis_angle(&axis, angle); self.isometry.rotation = q * self.isometry.rotation; self } /// Postmultiply a rotation, i.e. rotate relatively to the local orientation (the /// currently applied rotations), about a specified axis. /// /// `delta_angle` is specified in radians. #[inline] pub fn append_rotation(&mut self, axis: Unit<Vector3<f32>>, angle: f32) -> &mut Self { self.isometry.rotation *= UnitQuaternion::from_axis_angle(&axis, angle); self } /// Set the position. pub fn set_translation<N: RealField + SubsetOf<f32>>( &mut self, position: Vector3<N>, ) -> &mut Self { self.isometry.translation.vector = na::convert(position); self } /// Adds the specified amounts to the translation vector. pub fn append_translation_xyz(&mut self, x: f32, y: f32, z: f32) -> &mut Self { self.append_translation(Vector3::new(x, y, z)); self } /// Sets the specified values of the translation vector. pub fn set_translation_xyz(&mut self, x: f32, y: f32, z: f32) -> &mut Self { self.set_translation(Vector3::new(x, y, z)) } /// Sets the rotation of the transform. pub fn set_rotation<N: RealField + SubsetOf<f32>>( &mut self, rotation: UnitQuaternion<N>, ) -> &mut Self { self.isometry.rotation = na::convert(rotation); self } /// Set the rotation using x, y, z Euler axes. /// /// All angles are specified in radians. Euler order is x → y → z. /// /// # Arguments /// /// - x - The angle to apply around the x axis. /// - y - The angle to apply around the y axis. /// - z - The angle to apply around the z axis. /// /// # Note on Euler angle semantics and `nalgebra` /// /// `nalgebra` has a few methods related to Euler angles, and they use /// roll, pitch, and yaw as arguments instead of x, y, and z axes specifically. /// Yaw has the semantic meaning of rotation about the "up" axis, roll about the /// "forward axis", and pitch about the "right" axis respectively. However, `nalgebra` /// assumes a +Z = up coordinate system for its roll, pitch, and yaw semantics, while /// Amethyst uses a +Y = up coordinate system. Therefore, the `nalgebra` Euler angle /// methods are slightly confusing to use in concert with Amethyst, and so we've /// provided our own with semantics that match the rest of Amethyst. If you do end up /// using `nalgebra`'s `euler_angles` or `from_euler_angles` methods, be aware that /// 'roll' in that context will mean rotation about the x axis, 'pitch' will mean /// rotation about the y axis, and 'yaw' will mean rotation about the z axis. /// /// ``` /// # use amethyst_core::transform::Transform; /// let mut transform = Transform::default(); /// /// transform.set_rotation_euler(1.0, 0.0, 0.0); /// /// assert_eq!(transform.rotation().euler_angles().0, 1.0); /// ``` pub fn set_rotation_euler(&mut self, x: f32, y: f32, z: f32) -> &mut Self { self.isometry.rotation = UnitQuaternion::from_euler_angles(x, y, z); self } /// Get the Euler angles of the current rotation. Returns /// in a tuple of the form (x, y, z), where `x`, `y`, and `z` /// are the current rotation about that axis in radians. /// /// # Note on Euler angle semantics and `nalgebra` /// /// `nalgebra` has a few methods related to Euler angles, and they use /// roll, pitch, and yaw as arguments instead of x, y, and z axes specifically. /// Yaw has the semantic meaning of rotation about the "up" axis, roll about the /// "forward axis", and pitch about the "right" axis respectively. However, `nalgebra` /// assumes a +Z = up coordinate system for its roll, pitch, and yaw semantics, while /// Amethyst uses a +Y = up coordinate system. Therefore, the `nalgebra` Euler angle /// methods are slightly confusing to use in concert with Amethyst, and so we've /// provided our own with semantics that match the rest of Amethyst. If you do end up /// using `nalgebra`'s `euler_angles` or `from_euler_angles` methods, be aware that /// 'roll' in that context will mean rotation about the x axis, 'pitch' will mean /// rotation about the y axis, and 'yaw' will mean rotation about the z axis. pub fn euler_angles(&self) -> (f32, f32, f32) { self.isometry.rotation.euler_angles() } /// Concatenates another transform onto `self`. /// /// Concatenating is roughly equivalent to doing matrix multiplication except for the fact that /// it's done on `Transform` which is decomposed. pub fn concat(&mut self, other: &Self) -> &mut Self { // The order of these is somewhat important as the translation relies on the rotation and // scaling not having been modified already. self.isometry.translation.vector += self.isometry.rotation * other.isometry.translation.vector.component_mul(&self.scale); self.scale.component_mul_assign(&other.scale); self.isometry.rotation *= other.isometry.rotation; self } /// Verifies that the global `Matrix4` doesn't contain any NaN values. pub fn is_finite(&self) -> bool { self.global_matrix .as_slice() .iter() .all(|f| f32::is_finite(*f)) } /// Calculates the inverse of this transform, which is in effect the 'view matrix' as /// commonly seen in computer graphics. This function computes the view matrix for ONLY /// the local transformation, and ignores any `Parent`s of this entity. /// /// We can exploit the extra information we have to perform this inverse faster than `O(n^3)`. pub fn view_matrix(&self) -> Matrix4<f32> { let inv_scale = Vector3::new(1.0 / self.scale.x, 1.0 / self.scale.y, 1.0 / self.scale.z); self.isometry .inverse() .to_homogeneous() .append_nonuniform_scaling(&inv_scale) } /// Calculates the inverse of this transform, which is in effect the 'view matrix' as /// commonly seen in computer graphics. This function computes the view matrix for the /// global transformation of the entity, and so takes into account `Parent`s. /// /// We can exploit the extra information we have to perform this inverse faster than `O(n^3)`. pub fn global_view_matrix(&self) -> Matrix4<f32> { let mut res = self.global_matrix; // Perform an in-place inversion of the 3x3 matrix { let mut slice3x3 = res.fixed_slice_mut::<na::U3, na::U3>(0, 0); assert!(slice3x3.try_inverse_mut()); } let mut translation = -res.column(3).xyz(); translation = res.fixed_slice::<na::U3, na::U3>(0, 0) * translation; let mut res_trans = res.column_mut(3); res_trans.x = translation.x; res_trans.y = translation.y; res_trans.z = translation.z; res } /// This function allows for test cases of copying the local matrix to the global matrix. /// Useful for tests or other debug type access. #[inline] pub fn copy_local_to_global(&mut self) { self.global_matrix = self.matrix() } } impl Default for Transform { /// The default transform does nothing when used to transform an entity. fn default() -> Self { Transform { isometry: Isometry3::identity(), scale: Vector3::from_element(1.0), global_matrix: na::one(), } } } impl Component for Transform { type Storage = FlaggedStorage<Self, DenseVecStorage<Self>>; } /// Creates a Transform using the `Vector3` as the translation vector. /// /// ``` /// # use amethyst_core::{transform::Transform}; /// # use amethyst_core::math::Vector3; /// let transform = Transform::from(Vector3::new(100.0, 200.0, 300.0)); /// assert_eq!(transform.translation().x, 100.0); /// ``` impl From<Vector3<f32>> for Transform { fn from(translation: Vector3<f32>) -> Self { Transform { isometry: Isometry3::new(translation, na::zero()), ..Default::default() } } } /// Creates a Transform using the `Vector3<f64>` as the translation vector. /// Provided for convinience when providing constants. /// ``` /// # use amethyst_core::transform::Transform; /// # use amethyst_core::math::Vector3; /// let transform = Transform::from(Vector3::new(100.0, 200.0, 300.0)); /// assert_eq!(transform.translation().x, 100.0); /// impl From<Vector3<f64>> for Transform { #[inline] fn from(translation: Vector3<f64>) -> Self { Transform { isometry: Isometry3::new(na::convert(translation), na::zero()), ..Default::default() } } } #[derive(Debug, Serialize, Deserialize)] #[serde(rename = "Transform", default)] struct TransformValues { translation: [f32; 3], rotation: [f32; 4], scale: [f32; 3], } impl Default for TransformValues { /// The default transform does nothing when used to transform an entity. fn default() -> Self { TransformValues { translation: [0.0; 3], rotation: [0.0, 0.0, 0.0, 1.0], scale: [1.0; 3], } } } impl From<TransformValues> for Transform { fn from(transform_values: TransformValues) -> Self { let TransformValues { translation, rotation, scale, } = transform_values; let isometry = Isometry3::from_parts( Translation3::new(translation[0], translation[1], translation[2]), Unit::new_normalize(Quaternion::new( rotation[3], rotation[0], rotation[1], rotation[2], )), ); let scale = Vector3::new(scale[0], scale[1], scale[2]); Transform { isometry, scale, ..Default::default() } } } impl Into<TransformValues> for Transform { fn into(self) -> TransformValues { TransformValues { translation: self.isometry.translation.vector.into(), rotation: self.isometry.rotation.as_ref().coords.into(), scale: self.scale.into(), } } } #[cfg(test)] mod tests { use crate::{ approx::*, math::{UnitQuaternion, Vector3}, Transform, }; /// Sanity test for concat operation #[test] fn test_mul() { // For the condition to hold both scales must be uniform let mut first = Transform::default(); first.set_translation_xyz(20., 10., -3.); first.set_scale(Vector3::new(2.0, 2.0, 2.0)); first.set_rotation( UnitQuaternion::rotation_between( &Vector3::new(-1.0, 1.0, 2.0), &Vector3::new(1.0, 0.0, 0.0), ) .unwrap(), ); let mut second = Transform::default(); second.set_translation_xyz(2., 1., -3.); second.set_scale(Vector3::new(1.0, 1.0, 1.0)); second.set_rotation( UnitQuaternion::rotation_between( &Vector3::new(7.0, -1.0, 3.0), &Vector3::new(2.0, 1.0, 1.0), ) .unwrap(), ); // check Mat(first * second) == Mat(first) * Mat(second) assert_relative_eq!( first.matrix() * second.matrix(), first.concat(&second).matrix(), max_relative = 0.000_001, ); assert_relative_eq!( first.matrix() * second.matrix(), first.concat(&second).matrix(), max_relative = 0.000_001, ); } /// Test correctness of the view matrix locally #[test] fn test_view_matrix() { let mut transform = Transform::default(); transform.set_translation_xyz(5.0, 70.1, 43.7); transform.set_scale(Vector3::new(1.0, 5.0, 8.9)); transform.set_rotation( UnitQuaternion::rotation_between( &Vector3::new(-1.0, 1.0, 2.0), &Vector3::new(1.0, 0.0, 0.0), ) .unwrap(), ); assert_ulps_eq!( transform.matrix().try_inverse().unwrap(), transform.view_matrix(), ); } /// Test correctness of global view matrix vs. inverse matrix globally #[test] fn test_global_view_matrix() { let mut transform = Transform::default(); transform.set_translation_xyz(5.0, 70.1, 43.7); transform.set_scale(Vector3::new(1.0, 5.0, 8.9)); transform.set_rotation( UnitQuaternion::rotation_between( &Vector3::new(-1.0, 1.0, 2.0), &Vector3::new(1.0, 0.0, 0.0), ) .unwrap(), ); assert_ulps_eq!( transform.global_matrix().try_inverse().unwrap(), transform.global_view_matrix(), ); } #[test] fn ser_deser() { let mut transform = Transform::default(); transform.set_translation_xyz(1.0, 2.0, 3.0); transform.set_scale(Vector3::new(4.0, 5.0, 6.0)); transform.set_rotation( UnitQuaternion::rotation_between( &Vector3::new(-1.0, 1.0, 2.0), &Vector3::new(1.0, 0.0, 0.0), ) .unwrap(), ); let s: String = ron::ser::to_string_pretty(&transform, ron::ser::PrettyConfig::default()).unwrap(); let transform2: Transform = ron::de::from_str(&s).unwrap(); assert_eq!(transform, transform2); } #[test] fn deser_seq_default_identity() { let transform: Transform = ron::de::from_str("()").unwrap(); assert_eq!(transform, Transform::default()); } #[test] fn is_finite() { let mut transform = Transform::default(); assert!(transform.is_finite()); transform.global_matrix.fill_row(2, std::f32::NAN); assert!(!transform.is_finite()); } }