[−][src]Type Definition nalgebra::geometry::Rotation3
type Rotation3<N> = Rotation<N, U3>;
A 3-dimensional rotation matrix.
Methods
impl<N: RealField> Rotation3<N>
[src]
pub fn new<SB: Storage<N, U3>>(axisangle: Vector<N, U3, SB>) -> Self
[src]
Builds a 3 dimensional rotation matrix from an axis and an angle.
Arguments
axisangle
- A vector representing the rotation. Its magnitude is the amount of rotation in radian. Its direction is the axis of rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let rot = Rotation3::new(axisangle); assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
pub fn from_matrix(m: &Matrix3<N>) -> Self
[src]
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix_eps(
m: &Matrix3<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self
[src]
m: &Matrix3<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: a guess of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toRotation3::identity()
if no other guesses come to mind.
pub fn from_scaled_axis<SB: Storage<N, U3>>(
axisangle: Vector<N, U3, SB>
) -> Self
[src]
axisangle: Vector<N, U3, SB>
) -> Self
Builds a 3D rotation matrix from an axis scaled by the rotation angle.
This is the same as Self::new(axisangle)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let rot = Rotation3::new(axisangle); assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self where
SB: Storage<N, U3>,
[src]
SB: Storage<N, U3>,
Builds a 3D rotation matrix from an axis and a rotation angle.
Example
let axis = Vector3::y_axis(); let angle = f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let rot = Rotation3::from_axis_angle(&axis, angle); assert_eq!(rot.axis().unwrap(), axis); assert_eq!(rot.angle(), angle); assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self
[src]
Creates a new rotation from Euler angles.
The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3); let euler = rot.euler_angles(); assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
pub fn to_euler_angles(&self) -> (N, N, N)
[src]
This is renamed to use .euler_angles()
.
Creates Euler angles from a rotation.
The angles are produced in the form (roll, pitch, yaw).
pub fn euler_angles(&self) -> (N, N, N)
[src]
Euler angles corresponding to this rotation from a rotation.
The angles are produced in the form (roll, pitch, yaw).
Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3); let euler = rot.euler_angles(); assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
pub fn renormalize(&mut self)
[src]
Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.
pub fn face_towards<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
Creates a rotation that corresponds to the local frame of an observer standing at the
origin and looking toward dir
.
It maps the z
axis to the direction dir
.
Arguments
- dir - The look direction, that is, direction the matrix
z
axis will be aligned with. - up - The vertical direction. The only requirement of this parameter is to not be
collinear to
dir
. Non-collinearity is not checked.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let rot = Rotation3::face_towards(&dir, &up); assert_relative_eq!(rot * Vector3::z(), dir.normalize());
pub fn new_observer_frames<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
renamed to face_towards
Deprecated: Use [Rotation3::face_towards] instead.
pub fn look_at_rh<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
Builds a right-handed look-at view matrix without translation.
It maps the view direction dir
to the negative z
axis.
This conforms to the common notion of right handed look-at matrix from the computer
graphics community.
Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let rot = Rotation3::look_at_rh(&dir, &up); assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
pub fn look_at_lh<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
Builds a left-handed look-at view matrix without translation.
It maps the view direction dir
to the positive z
axis.
This conforms to the common notion of left handed look-at matrix from the computer
graphics community.
Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let rot = Rotation3::look_at_lh(&dir, &up); assert_relative_eq!(rot * dir.normalize(), Vector3::z());
pub fn rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>
) -> Option<Self> where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>
) -> Option<Self> where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
The rotation matrix required to align a
and b
but with its angle.
This is the rotation R
such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive()
.
Example
let a = Vector3::new(1.0, 2.0, 3.0); let b = Vector3::new(3.0, 1.0, 2.0); let rot = Rotation3::rotation_between(&a, &b).unwrap(); assert_relative_eq!(rot * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
n: N
) -> Option<Self> where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
n: N
) -> Option<Self> where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector3::new(1.0, 2.0, 3.0); let b = Vector3::new(3.0, 1.0, 2.0); let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap(); let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap(); assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
pub fn angle(&self) -> N
[src]
The rotation angle in [0; pi].
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let rot = Rotation3::from_axis_angle(&axis, 1.78); assert_relative_eq!(rot.angle(), 1.78);
pub fn axis(&self) -> Option<Unit<Vector3<N>>>
[src]
The rotation axis. Returns None
if the rotation angle is zero or PI.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = Rotation3::from_axis_angle(&axis, angle); assert_relative_eq!(rot.axis().unwrap(), axis); // Case with a zero angle. let rot = Rotation3::from_axis_angle(&axis, 0.0); assert!(rot.axis().is_none());
pub fn scaled_axis(&self) -> Vector3<N>
[src]
The rotation axis multiplied by the rotation angle.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3); let rot = Rotation3::new(axisangle); assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)>
[src]
The rotation axis and angle in ]0, pi] of this unit quaternion.
Returns None
if the angle is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = Rotation3::from_axis_angle(&axis, angle); let axis_angle = rot.axis_angle().unwrap(); assert_relative_eq!(axis_angle.0, axis); assert_relative_eq!(axis_angle.1, angle); // Case with a zero angle. let rot = Rotation3::from_axis_angle(&axis, 0.0); assert!(rot.axis_angle().is_none());
pub fn angle_to(&self, other: &Self) -> N
[src]
The rotation angle needed to make self
and other
coincide.
Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0); let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1); assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
pub fn rotation_to(&self, other: &Self) -> Self
[src]
The rotation matrix needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0); let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1); let rot_to = rot1.rotation_to(&rot2); assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
pub fn powf(&self, n: N) -> Self
[src]
Raise the quaternion to a given floating power, i.e., returns the rotation with the same
axis as self
and an angle equal to self.angle()
multiplied by n
.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = Rotation3::from_axis_angle(&axis, angle); let pow = rot.powf(2.0); assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6); assert_eq!(pow.angle(), 2.4);
Trait Implementations
impl<N: RealField> From<EulerAngles<N, IntraXYZ>> for Rotation3<N>
[src]
fn from(euler: EulerAngles<N, IntraXYZ>) -> Self
[src]
impl<N: RealField> From<Unit<Quaternion<N>>> for Rotation3<N>
[src]
fn from(q: UnitQuaternion<N>) -> Self
[src]
impl<N1, N2> SubsetOf<Unit<Quaternion<N2>>> for Rotation3<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
[src]
N1: RealField,
N2: RealField + SupersetOf<N1>,
fn to_superset(&self) -> UnitQuaternion<N2>
[src]
fn is_in_subset(q: &UnitQuaternion<N2>) -> bool
[src]
unsafe fn from_superset_unchecked(q: &UnitQuaternion<N2>) -> Self
[src]
fn from_superset(element: &T) -> Option<Self>
[src]
The inverse inclusion map: attempts to construct self
from the equivalent element of its superset. Read more