1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
use crossbeam_queue::SegQueue; use derivative::Derivative; use crate::{prelude::*, world::EntitiesRes}; struct Queue<T>(SegQueue<T>); impl<T> Default for Queue<T> { fn default() -> Queue<T> { Queue(SegQueue::new()) } } /// Like `EntityBuilder`, but inserts the component /// lazily, meaning on `maintain`. /// If you need those components to exist immediately, /// you have to insert them into the storages yourself. #[must_use = "Please call .build() on this to finish building it."] pub struct LazyBuilder<'a> { /// The entity that we're inserting components for. pub entity: Entity, /// The lazy update reference. pub lazy: &'a LazyUpdate, } impl<'a> Builder for LazyBuilder<'a> { /// Inserts a component using [LazyUpdate]. /// /// If a component was already associated with the entity, it will /// overwrite the previous component. fn with<C>(self, component: C) -> Self where C: Component + Send + Sync, { let entity = self.entity; self.lazy.exec(move |world| { let mut storage: WriteStorage<C> = SystemData::fetch(world); if storage.insert(entity, component).is_err() { log::warn!( "Lazy insert of component failed because {:?} was dead.", entity ); } }); self } /// Finishes the building and returns the built entity. /// Please note that no component is associated to this /// entity until you call [`World::maintain`]. fn build(self) -> Entity { self.entity } } trait LazyUpdateInternal: Send + Sync { fn update(self: Box<Self>, world: &mut World); } impl<F> LazyUpdateInternal for F where F: FnOnce(&mut World) + Send + Sync + 'static, { fn update(self: Box<Self>, world: &mut World) { self(world); } } /// Lazy updates can be used for world updates /// that need to borrow a lot of resources /// and as such should better be done at the end. /// They work lazily in the sense that they are /// dispatched when calling `world.maintain()`. /// /// Lazy updates are dispatched in the order that they /// are requested. Multiple updates sent from one system /// may be overridden by updates sent from other systems. /// /// Please note that the provided methods take `&self` /// so there's no need to get `LazyUpdate` mutably. /// This resource is added to the world by default. #[derive(Derivative)] #[derivative(Default)] pub struct LazyUpdate { #[derivative(Default(value = "Some(Default::default())"))] queue: Option<Queue<Box<dyn LazyUpdateInternal>>>, } impl LazyUpdate { /// Creates a new `LazyBuilder` which inserts components /// using `LazyUpdate`. This means that the components won't /// be available immediately, but only after a `maintain` /// on `World` is performed. /// /// ## Examples /// /// ``` /// # use specs::prelude::*; /// # let mut world = World::new(); /// struct Pos(f32, f32); /// /// impl Component for Pos { /// type Storage = VecStorage<Self>; /// } /// /// # let lazy = world.read_resource::<LazyUpdate>(); /// # let entities = world.entities(); /// let my_entity = lazy.create_entity(&entities).with(Pos(1.0, 3.0)).build(); /// ``` pub fn create_entity(&self, ent: &EntitiesRes) -> LazyBuilder { let entity = ent.create(); LazyBuilder { entity, lazy: self } } /// Lazily inserts a component for an entity. /// /// ## Examples /// /// ``` /// # use specs::prelude::*; /// # /// struct Pos(f32, f32); /// /// impl Component for Pos { /// type Storage = VecStorage<Self>; /// } /// /// struct InsertPos; /// /// impl<'a> System<'a> for InsertPos { /// type SystemData = (Entities<'a>, Read<'a, LazyUpdate>); /// /// fn run(&mut self, (ent, lazy): Self::SystemData) { /// let a = ent.create(); /// lazy.insert(a, Pos(1.0, 1.0)); /// } /// } /// ``` pub fn insert<C>(&self, e: Entity, c: C) where C: Component + Send + Sync, { self.exec(move |world| { let mut storage: WriteStorage<C> = SystemData::fetch(world); if storage.insert(e, c).is_err() { log::warn!("Lazy insert of component failed because {:?} was dead.", e); } }); } /// Lazily inserts components for entities. /// /// ## Examples /// /// ``` /// # use specs::prelude::*; /// # /// struct Pos(f32, f32); /// /// impl Component for Pos { /// type Storage = VecStorage<Self>; /// } /// /// struct InsertPos; /// /// impl<'a> System<'a> for InsertPos { /// type SystemData = (Entities<'a>, Read<'a, LazyUpdate>); /// /// fn run(&mut self, (ent, lazy): Self::SystemData) { /// let a = ent.create(); /// let b = ent.create(); /// /// lazy.insert_all(vec![(a, Pos(3.0, 1.0)), (b, Pos(0.0, 4.0))]); /// } /// } /// ``` pub fn insert_all<C, I>(&self, iter: I) where C: Component + Send + Sync, I: IntoIterator<Item = (Entity, C)> + Send + Sync + 'static, { self.exec(move |world| { let mut storage: WriteStorage<C> = SystemData::fetch(world); for (e, c) in iter { if storage.insert(e, c).is_err() { log::warn!("Lazy insert of component failed because {:?} was dead.", e); } } }); } /// Lazily removes a component. /// /// ## Examples /// /// ``` /// # use specs::prelude::*; /// # /// struct Pos; /// /// impl Component for Pos { /// type Storage = VecStorage<Self>; /// } /// /// struct RemovePos; /// /// impl<'a> System<'a> for RemovePos { /// type SystemData = (Entities<'a>, Read<'a, LazyUpdate>); /// /// fn run(&mut self, (ent, lazy): Self::SystemData) { /// for entity in ent.join() { /// lazy.remove::<Pos>(entity); /// } /// } /// } /// ``` pub fn remove<C>(&self, e: Entity) where C: Component + Send + Sync, { self.exec(move |world| { let mut storage: WriteStorage<C> = SystemData::fetch(world); storage.remove(e); }); } /// Lazily executes a closure with world access. /// /// ## Examples /// /// ``` /// # use specs::prelude::*; /// # /// struct Pos; /// /// impl Component for Pos { /// type Storage = VecStorage<Self>; /// } /// /// struct Execution; /// /// impl<'a> System<'a> for Execution { /// type SystemData = (Entities<'a>, Read<'a, LazyUpdate>); /// /// fn run(&mut self, (ent, lazy): Self::SystemData) { /// for entity in ent.join() { /// lazy.exec(move |world| { /// if world.is_alive(entity) { /// println!("Entity {:?} is alive.", entity); /// } /// }); /// } /// } /// } /// ``` pub fn exec<F>(&self, f: F) where F: FnOnce(&World) + 'static + Send + Sync, { self.queue .as_ref() .unwrap() .0 .push(Box::new(|w: &mut World| f(w))); } /// Lazily executes a closure with mutable world access. /// /// This can be used to add a resource to the `World` from a system. /// /// ## Examples /// /// ``` /// # use specs::prelude::*; /// # /// /// struct Sys; /// /// impl<'a> System<'a> for Sys { /// type SystemData = (Entities<'a>, Read<'a, LazyUpdate>); /// /// fn run(&mut self, (ent, lazy): Self::SystemData) { /// for entity in ent.join() { /// lazy.exec_mut(move |world| { /// // complete extermination! /// world.delete_all(); /// }); /// } /// } /// } /// ``` pub fn exec_mut<F>(&self, f: F) where F: FnOnce(&mut World) + 'static + Send + Sync, { self.queue.as_ref().unwrap().0.push(Box::new(f)); } /// Allows to temporarily take the inner queue. pub(super) fn take(&mut self) -> Self { LazyUpdate { queue: self.queue.take(), } } /// Needs to be called to restore the inner queue. pub(super) fn restore(&mut self, mut maintained: Self) { use std::mem::swap; swap(&mut self.queue, &mut maintained.queue); } pub(super) fn maintain(&mut self, world: &mut World) { let lazy = &mut self.queue.as_mut().unwrap().0; while let Ok(l) = lazy.pop() { l.update(world); } } } impl Drop for LazyUpdate { fn drop(&mut self) { // TODO: remove as soon as leak is fixed in crossbeam if let Some(queue) = self.queue.as_mut() { while queue.0.pop().is_ok() {} } } }