1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
use std::borrow::Borrow; use rayon::{join, ThreadPool}; use crate::{ dispatch::util::check_intersection, system::{RunNow, System}, world::{ResourceId, World}, }; /// The "leave node" for the `Par` / `Seq` list. pub struct Nil; /// The `par!` macro may be used to easily create a structure /// which runs things in parallel. /// /// ## Examples /// /// ``` /// #[macro_use(par)] /// extern crate shred; /// /// # use shred::System; /// # struct SysA; impl<'a> System<'a> for SysA { type SystemData = (); fn run(&mut self, _: ()){}} /// # struct SysB; impl<'a> System<'a> for SysB { type SystemData = (); fn run(&mut self, _: ()){}} /// # struct SysC; impl<'a> System<'a> for SysC { type SystemData = (); fn run(&mut self, _: ()){}} /// # fn main() { /// par![ /// SysA, /// SysB, /// SysC, /// ] /// # ;} /// ``` #[macro_export] macro_rules! par { ($head:expr, $( $tail:expr ,)*) => { { $crate::Par::new($head) $( .with($tail) )* } }; } /// The `seq!` macro may be used to easily create a structure /// which runs things sequentially. /// /// ## Examples /// /// ``` /// #[macro_use(seq)] /// extern crate shred; /// /// # struct SysA; /// # struct SysB; /// # struct SysC; /// # fn main() { /// seq![SysA, SysB, SysC,] /// # ;} /// ``` #[macro_export] macro_rules! seq { ($head:expr, $( $tail:expr ,)*) => { { $crate::Seq::new($head) $( .with($tail) )* } }; } impl<'a> System<'a> for Nil { type SystemData = (); fn run(&mut self, _: Self::SystemData) {} } /// Runs two tasks in parallel. /// These two tasks are called `head` and `tail` /// in the following documentation. pub struct Par<H, T> { head: H, tail: T, } impl<H> Par<H, Nil> { /// Creates a new `Par` struct, with the tail being a no-op. pub fn new(head: H) -> Self { Par { head, tail: Nil } } /// Adds `sys` as the second job and returns a new `Par` struct /// with the previous struct as head and a no-op tail. pub fn with<T>(self, sys: T) -> Par<Par<H, T>, Nil> where H: for<'a> RunWithPool<'a>, T: for<'a> RunWithPool<'a>, { debug_assert!( { let mut reads = Vec::new(); let mut writes = Vec::new(); self.head.reads(&mut reads); self.head.writes(&mut writes); let mut sys_reads = Vec::new(); let mut sys_writes = Vec::new(); sys.reads(&mut sys_reads); sys.writes(&mut sys_writes); !(check_intersection(writes.iter(), sys_reads.iter()) || check_intersection(writes.iter(), sys_writes.iter()) || check_intersection(reads.iter(), sys_writes.iter())) }, "Tried to add system with conflicting reads / writes" ); Par { head: Par { head: self.head, tail: sys, }, tail: Nil, } } } /// A dispatcher intended to be used with /// `Par` and `Seq` structures. /// /// This is more flexible and performant than `Dispatcher`, /// however, you have to check conflicts yourself. /// That means you cannot run two systems in parallel /// which write to the same resource; if you'd do that, /// one of the systems will panic while trying to fetch /// the `SystemData`. /// /// ## Thread-local systems /// /// This dispatcher also allows more freedom /// for thread-local systems; you can execute wherever you want, /// just not in parallel with other systems (putting one inside /// `par!` will give you a compile-time error saying the `Send` requirement /// is unmet). /// /// ## Examples /// /// ``` /// # extern crate rayon; /// #[macro_use(par, seq)] /// extern crate shred; /// /// # use rayon::ThreadPoolBuilder; /// # /// # use shred::{ParSeq, World, System}; /// # /// # macro_rules! impl_sys { /// # ($( $id:ident )*) => { /// # $( /// # impl<'a> ::shred::System<'a> for $id { /// # type SystemData = (); /// # fn run(&mut self, _: Self::SystemData) {} /// # } /// # )* /// # }; /// # } /// # /// # struct SysA; /// # struct SysB; /// # struct SysC; /// # struct SysD; /// # struct SysWithLifetime<'a>(&'a u8); /// # struct SysLocal(*const u8); /// # /// # impl_sys!(SysA SysB SysC SysD SysLocal); /// # /// # impl<'a, 'b> System<'a> for SysWithLifetime<'b> { /// # type SystemData = (); /// # /// # fn run(&mut self, _: Self::SystemData) {} /// # } /// /// # fn main() { /// # #![cfg_attr(rustfmt, rustfmt_skip)] /// # /// # let pool = ThreadPoolBuilder::default().build().unwrap(); /// # /// # let mut world = World::empty(); /// let x = 5u8; /// /// let mut dispatcher = ParSeq::new( /// seq![ /// par![ /// SysA, /// SysWithLifetime(&x), /// seq![ /// SysC, /// SysD, /// ], /// ], /// SysB, /// SysLocal(&x as *const u8), /// ], /// &pool, /// ); /// /// dispatcher.dispatch(&mut world); /// # } /// ``` pub struct ParSeq<P, T> { run: T, pool: P, } impl<P, T> ParSeq<P, T> where P: Borrow<ThreadPool>, T: for<'a> RunWithPool<'a>, { /// Creates a new `ParSeq` dispatcher. /// `run` is usually created by using the `par!` / `seq!` /// macros. pub fn new(run: T, pool: P) -> Self { ParSeq { run, pool } } /// Sets up `world` for `dispatch`ing. This will add default values for /// required resources by calling `System::setup`. pub fn setup(&mut self, world: &mut World) { self.run.setup(world); } /// Dispatches the systems using `world`. /// This doesn't call any virtual functions. /// /// Please note that this method assumes that no resource /// is currently borrowed. If that's the case, it panics. pub fn dispatch(&mut self, world: &World) { self.run.run(world, self.pool.borrow()); } } impl<'a, P, T> RunNow<'a> for ParSeq<P, T> where P: Borrow<ThreadPool>, T: for<'b> RunWithPool<'b>, { fn run_now(&mut self, world: &World) { RunWithPool::run(&mut self.run, world, self.pool.borrow()); } fn setup(&mut self, world: &mut World) { RunWithPool::setup(&mut self.run, world); } } /// Similar to `RunNow` except additionally taking in a rayon::ThreadPool /// for parallelism. pub trait RunWithPool<'a> { /// Sets up `World` for a later call to `run`. fn setup(&mut self, world: &mut World); /// Runs the system/group of systems. Possibly in parallel depending /// on how the structure is set up. /// /// # Panics /// /// Panics if the system tries to fetch resources /// which are borrowed in an incompatible way already /// (tries to read from a resource which is already written to or /// tries to write to a resource which is read from). fn run(&mut self, world: &'a World, pool: &ThreadPool); /// Accumulates the necessary read/shared resources from the /// systems in this group. fn reads(&self, reads: &mut Vec<ResourceId>); /// Accumulates the necessary write/exclusive resources from the /// systems in this group. fn writes(&self, writes: &mut Vec<ResourceId>); } impl<'a, T> RunWithPool<'a> for T where T: System<'a>, { fn setup(&mut self, world: &mut World) { T::setup(self, world); } fn run(&mut self, world: &'a World, _: &ThreadPool) { RunNow::run_now(self, world); } fn reads(&self, reads: &mut Vec<ResourceId>) { use crate::system::Accessor; reads.extend(self.accessor().reads()) } fn writes(&self, writes: &mut Vec<ResourceId>) { use crate::system::Accessor; writes.extend(self.accessor().writes()) } } impl<'a, H, T> RunWithPool<'a> for Par<H, T> where H: RunWithPool<'a> + Send, T: RunWithPool<'a> + Send, { fn setup(&mut self, world: &mut World) { self.head.setup(world); self.tail.setup(world); } fn run(&mut self, world: &'a World, pool: &ThreadPool) { let head = &mut self.head; let tail = &mut self.tail; let head = move || head.run(world, pool); let tail = move || tail.run(world, pool); if pool.current_thread_index().is_none() { pool.join(head, tail); } else { join(head, tail); } } fn reads(&self, reads: &mut Vec<ResourceId>) { self.head.reads(reads); self.tail.reads(reads); } fn writes(&self, writes: &mut Vec<ResourceId>) { self.head.writes(writes); self.tail.writes(writes); } } /// Runs two tasks sequentially. /// These two tasks are called `head` and `tail` /// in the following documentation. pub struct Seq<H, T> { head: H, tail: T, } impl<H> Seq<H, Nil> { /// Creates a new `Seq` struct, with the tail being a no-op. pub fn new(head: H) -> Self { Seq { head, tail: Nil } } /// Adds `sys` as the second job and returns a new `Seq` struct /// with the previous struct as head and a no-op tail. pub fn with<T>(self, sys: T) -> Seq<Seq<H, T>, Nil> { Seq { head: Seq { head: self.head, tail: sys, }, tail: Nil, } } } impl<'a, H, T> RunWithPool<'a> for Seq<H, T> where H: RunWithPool<'a>, T: RunWithPool<'a>, { fn setup(&mut self, world: &mut World) { self.head.setup(world); self.tail.setup(world); } fn run(&mut self, world: &'a World, pool: &ThreadPool) { self.head.run(world, pool); self.tail.run(world, pool); } fn reads(&self, reads: &mut Vec<ResourceId>) { self.head.reads(reads); self.tail.reads(reads); } fn writes(&self, writes: &mut Vec<ResourceId>) { self.head.writes(writes); self.tail.writes(writes); } } #[cfg(test)] mod tests { use super::*; use std::sync::{atomic::*, Arc}; fn new_tp() -> ThreadPool { use rayon::ThreadPoolBuilder; ThreadPoolBuilder::new().build().unwrap() } #[test] fn nested_joins() { let pool = new_tp(); pool.join(|| join(|| join(|| join(|| (), || ()), || ()), || ()), || ()); } #[test] fn build_par() { let pool = new_tp(); struct A(Arc<AtomicUsize>); impl<'a> System<'a> for A { type SystemData = (); fn run(&mut self, _: Self::SystemData) { self.0.fetch_add(1, Ordering::AcqRel); } } let nr = Arc::new(AtomicUsize::new(0)); Par::new(A(nr.clone())) .with(A(nr.clone())) .with(A(nr.clone())) .run(&World::empty(), &pool); assert_eq!(nr.load(Ordering::Acquire), 3); par![A(nr.clone()), A(nr.clone()),].run(&World::empty(), &pool); assert_eq!(nr.load(Ordering::Acquire), 5); } #[test] fn build_seq() { let pool = new_tp(); struct A(Arc<AtomicUsize>); impl<'a> System<'a> for A { type SystemData = (); fn run(&mut self, _: Self::SystemData) { self.0.fetch_add(1, Ordering::AcqRel); } } let nr = Arc::new(AtomicUsize::new(0)); Seq::new(A(nr.clone())) .with(A(nr.clone())) .with(A(nr.clone())) .run(&World::empty(), &pool); assert_eq!(nr.load(Ordering::Acquire), 3); } }