1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use super::{IndexedParallelIterator, IntoParallelIterator, ParallelExtend, ParallelIterator};
use std::slice;
use std::sync::atomic::{AtomicUsize, Ordering};

mod consumer;
use self::consumer::CollectConsumer;
use super::unzip::unzip_indexed;

mod test;

/// Collects the results of the exact iterator into the specified vector.
///
/// This is called by `IndexedParallelIterator::collect_into_vec`.
pub(super) fn collect_into_vec<I, T>(pi: I, v: &mut Vec<T>)
where
    I: IndexedParallelIterator<Item = T>,
    T: Send,
{
    v.truncate(0); // clear any old data
    let mut collect = Collect::new(v, pi.len());
    pi.drive(collect.as_consumer());
    collect.complete();
}

/// Collects the results of the iterator into the specified vector.
///
/// Technically, this only works for `IndexedParallelIterator`, but we're faking a
/// bit of specialization here until Rust can do that natively.  Callers are
/// using `opt_len` to find the length before calling this, and only exact
/// iterators will return anything but `None` there.
///
/// Since the type system doesn't understand that contract, we have to allow
/// *any* `ParallelIterator` here, and `CollectConsumer` has to also implement
/// `UnindexedConsumer`.  That implementation panics `unreachable!` in case
/// there's a bug where we actually do try to use this unindexed.
fn special_extend<I, T>(pi: I, len: usize, v: &mut Vec<T>)
where
    I: ParallelIterator<Item = T>,
    T: Send,
{
    let mut collect = Collect::new(v, len);
    pi.drive_unindexed(collect.as_consumer());
    collect.complete();
}

/// Unzips the results of the exact iterator into the specified vectors.
///
/// This is called by `IndexedParallelIterator::unzip_into_vecs`.
pub(super) fn unzip_into_vecs<I, A, B>(pi: I, left: &mut Vec<A>, right: &mut Vec<B>)
where
    I: IndexedParallelIterator<Item = (A, B)>,
    A: Send,
    B: Send,
{
    // clear any old data
    left.truncate(0);
    right.truncate(0);

    let len = pi.len();
    let mut left = Collect::new(left, len);
    let mut right = Collect::new(right, len);

    unzip_indexed(pi, left.as_consumer(), right.as_consumer());

    left.complete();
    right.complete();
}

/// Manage the collection vector.
struct Collect<'c, T: Send + 'c> {
    writes: AtomicUsize,
    vec: &'c mut Vec<T>,
    len: usize,
}

impl<'c, T: Send + 'c> Collect<'c, T> {
    fn new(vec: &'c mut Vec<T>, len: usize) -> Self {
        Collect {
            writes: AtomicUsize::new(0),
            vec,
            len,
        }
    }

    /// Create a consumer on a slice of our memory.
    fn as_consumer(&mut self) -> CollectConsumer<'_, T> {
        // Reserve the new space.
        self.vec.reserve(self.len);

        // Get a correct borrow, then extend it for the newly added length.
        let start = self.vec.len();
        let mut slice = &mut self.vec[start..];
        slice = unsafe { slice::from_raw_parts_mut(slice.as_mut_ptr(), self.len) };
        CollectConsumer::new(&self.writes, slice)
    }

    /// Update the final vector length.
    fn complete(self) {
        unsafe {
            // Here, we assert that `v` is fully initialized. This is
            // checked by the following assert, which counts how many
            // total writes occurred. Since we know that the consumer
            // cannot have escaped from `drive` (by parametricity,
            // essentially), we know that any stores that will happen,
            // have happened. Unless some code is buggy, that means we
            // should have seen `len` total writes.
            let actual_writes = self.writes.load(Ordering::Relaxed);
            assert!(
                actual_writes == self.len,
                "expected {} total writes, but got {}",
                self.len,
                actual_writes
            );
            let new_len = self.vec.len() + self.len;
            self.vec.set_len(new_len);
        }
    }
}

/// Extend a vector with items from a parallel iterator.
impl<T> ParallelExtend<T> for Vec<T>
where
    T: Send,
{
    fn par_extend<I>(&mut self, par_iter: I)
    where
        I: IntoParallelIterator<Item = T>,
    {
        // See the vec_collect benchmarks in rayon-demo for different strategies.
        let par_iter = par_iter.into_par_iter();
        match par_iter.opt_len() {
            Some(len) => {
                // When Rust gets specialization, we can get here for indexed iterators
                // without relying on `opt_len`.  Until then, `special_extend()` fakes
                // an unindexed mode on the promise that `opt_len()` is accurate.
                special_extend(par_iter, len, self);
            }
            None => {
                // This works like `extend`, but `Vec::append` is more efficient.
                let list = super::extend::collect(par_iter);
                self.reserve(super::extend::len(&list));
                for mut vec in list {
                    self.append(&mut vec);
                }
            }
        }
    }
}