1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use libc;
use std::cell::{Cell, UnsafeCell};
use std::mem;
#[cfg(any(target_os = "macos", target_os = "ios"))]
use std::ptr;
use std::time::{Duration, Instant};

// x32 Linux uses a non-standard type for tv_nsec in timespec.
// See https://sourceware.org/bugzilla/show_bug.cgi?id=16437
#[cfg(all(target_arch = "x86_64", target_pointer_width = "32"))]
#[allow(non_camel_case_types)]
type tv_nsec_t = i64;
#[cfg(not(all(target_arch = "x86_64", target_pointer_width = "32")))]
#[allow(non_camel_case_types)]
type tv_nsec_t = libc::c_long;

// Helper type for putting a thread to sleep until some other thread wakes it up
pub struct ThreadParker {
    should_park: Cell<bool>,
    mutex: UnsafeCell<libc::pthread_mutex_t>,
    condvar: UnsafeCell<libc::pthread_cond_t>,
    initialized: Cell<bool>,
}

impl ThreadParker {
    pub fn new() -> ThreadParker {
        ThreadParker {
            should_park: Cell::new(false),
            mutex: UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER),
            condvar: UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER),
            initialized: Cell::new(false),
        }
    }

    // Initializes the condvar to use CLOCK_MONOTONIC instead of CLOCK_REALTIME.
    #[cfg(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "android"
    ))]
    unsafe fn init(&self) {}
    #[cfg(not(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "android"
    )))]
    unsafe fn init(&self) {
        let mut attr: libc::pthread_condattr_t = mem::uninitialized();
        let r = libc::pthread_condattr_init(&mut attr);
        debug_assert_eq!(r, 0);
        let r = libc::pthread_condattr_setclock(&mut attr, libc::CLOCK_MONOTONIC);
        debug_assert_eq!(r, 0);
        let r = libc::pthread_cond_init(self.condvar.get(), &attr);
        debug_assert_eq!(r, 0);
        let r = libc::pthread_condattr_destroy(&mut attr);
        debug_assert_eq!(r, 0);
    }

    // Prepares the parker. This should be called before adding it to the queue.
    pub unsafe fn prepare_park(&self) {
        self.should_park.set(true);
        if !self.initialized.get() {
            self.init();
            self.initialized.set(true);
        }
    }

    // Checks if the park timed out. This should be called while holding the
    // queue lock after park_until has returned false.
    pub unsafe fn timed_out(&self) -> bool {
        // We need to grab the mutex here because another thread may be
        // concurrently executing UnparkHandle::unpark, which is done without
        // holding the queue lock.
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);
        let should_park = self.should_park.get();
        let r = libc::pthread_mutex_unlock(self.mutex.get());
        debug_assert_eq!(r, 0);
        should_park
    }

    // Parks the thread until it is unparked. This should be called after it has
    // been added to the queue, after unlocking the queue.
    pub unsafe fn park(&self) {
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);
        while self.should_park.get() {
            let r = libc::pthread_cond_wait(self.condvar.get(), self.mutex.get());
            debug_assert_eq!(r, 0);
        }
        let r = libc::pthread_mutex_unlock(self.mutex.get());
        debug_assert_eq!(r, 0);
    }

    // Parks the thread until it is unparked or the timeout is reached. This
    // should be called after it has been added to the queue, after unlocking
    // the queue. Returns true if we were unparked and false if we timed out.
    pub unsafe fn park_until(&self, timeout: Instant) -> bool {
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);
        while self.should_park.get() {
            let now = Instant::now();
            if timeout <= now {
                let r = libc::pthread_mutex_unlock(self.mutex.get());
                debug_assert_eq!(r, 0);
                return false;
            }

            if let Some(ts) = timeout_to_timespec(timeout - now) {
                let r = libc::pthread_cond_timedwait(self.condvar.get(), self.mutex.get(), &ts);
                if ts.tv_sec < 0 {
                    // On some systems, negative timeouts will return EINVAL. In
                    // that case we won't sleep and will just busy loop instead,
                    // which is the best we can do.
                    debug_assert!(r == 0 || r == libc::ETIMEDOUT || r == libc::EINVAL);
                } else {
                    debug_assert!(r == 0 || r == libc::ETIMEDOUT);
                }
            } else {
                // Timeout calculation overflowed, just sleep indefinitely
                let r = libc::pthread_cond_wait(self.condvar.get(), self.mutex.get());
                debug_assert_eq!(r, 0);
            }
        }
        let r = libc::pthread_mutex_unlock(self.mutex.get());
        debug_assert_eq!(r, 0);
        true
    }

    // Locks the parker to prevent the target thread from exiting. This is
    // necessary to ensure that thread-local ThreadData objects remain valid.
    // This should be called while holding the queue lock.
    pub unsafe fn unpark_lock(&self) -> UnparkHandle {
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);

        UnparkHandle {
            thread_parker: self,
        }
    }
}

impl Drop for ThreadParker {
    fn drop(&mut self) {
        // On DragonFly pthread_mutex_destroy() returns EINVAL if called on a
        // mutex that was just initialized with libc::PTHREAD_MUTEX_INITIALIZER.
        // Once it is used (locked/unlocked) or pthread_mutex_init() is called,
        // this behaviour no longer occurs. The same applies to condvars.
        unsafe {
            let r = libc::pthread_mutex_destroy(self.mutex.get());
            if cfg!(target_os = "dragonfly") {
                debug_assert!(r == 0 || r == libc::EINVAL);
            } else {
                debug_assert_eq!(r, 0);
            }
            let r = libc::pthread_cond_destroy(self.condvar.get());
            if cfg!(target_os = "dragonfly") {
                debug_assert!(r == 0 || r == libc::EINVAL);
            } else {
                debug_assert_eq!(r, 0);
            }
        }
    }
}

// Handle for a thread that is about to be unparked. We need to mark the thread
// as unparked while holding the queue lock, but we delay the actual unparking
// until after the queue lock is released.
pub struct UnparkHandle {
    thread_parker: *const ThreadParker,
}

impl UnparkHandle {
    // Wakes up the parked thread. This should be called after the queue lock is
    // released to avoid blocking the queue for too long.
    pub unsafe fn unpark(self) {
        (*self.thread_parker).should_park.set(false);

        // We notify while holding the lock here to avoid races with the target
        // thread. In particular, the thread could exit after we unlock the
        // mutex, which would make the condvar access invalid memory.
        let r = libc::pthread_cond_signal((*self.thread_parker).condvar.get());
        debug_assert_eq!(r, 0);
        let r = libc::pthread_mutex_unlock((*self.thread_parker).mutex.get());
        debug_assert_eq!(r, 0);
    }
}

// Returns the current time on the clock used by pthread_cond_t as a timespec.
#[cfg(any(target_os = "macos", target_os = "ios"))]
unsafe fn timespec_now() -> libc::timespec {
    let mut now: libc::timeval = mem::uninitialized();
    let r = libc::gettimeofday(&mut now, ptr::null_mut());
    debug_assert_eq!(r, 0);
    libc::timespec {
        tv_sec: now.tv_sec,
        tv_nsec: now.tv_usec as tv_nsec_t * 1000,
    }
}
#[cfg(not(any(target_os = "macos", target_os = "ios")))]
unsafe fn timespec_now() -> libc::timespec {
    let mut now: libc::timespec = mem::uninitialized();
    let clock = if cfg!(target_os = "android") {
        // Android doesn't support pthread_condattr_setclock, so we need to
        // specify the timeout in CLOCK_REALTIME.
        libc::CLOCK_REALTIME
    } else {
        libc::CLOCK_MONOTONIC
    };
    let r = libc::clock_gettime(clock, &mut now);
    debug_assert_eq!(r, 0);
    now
}

// Converts a relative timeout into an absolute timeout in the clock used by
// pthread_cond_t.
unsafe fn timeout_to_timespec(timeout: Duration) -> Option<libc::timespec> {
    // Handle overflows early on
    if timeout.as_secs() > libc::time_t::max_value() as u64 {
        return None;
    }

    let now = timespec_now();
    let mut nsec = now.tv_nsec + timeout.subsec_nanos() as tv_nsec_t;
    let mut sec = now.tv_sec.checked_add(timeout.as_secs() as libc::time_t);
    if nsec >= 1_000_000_000 {
        nsec -= 1_000_000_000;
        sec = sec.and_then(|sec| sec.checked_add(1));
    }

    sec.map(|sec| libc::timespec {
        tv_nsec: nsec,
        tv_sec: sec,
    })
}