1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use deadlock;
use lock_api::RawMutex as RawMutexTrait;
use mutex::MutexGuard;
use parking_lot_core::{self, ParkResult, RequeueOp, UnparkResult, DEFAULT_PARK_TOKEN};
use raw_mutex::{RawMutex, TOKEN_HANDOFF, TOKEN_NORMAL};
use std::sync::atomic::{AtomicPtr, Ordering};
use std::time::{Duration, Instant};
use std::{fmt, ptr};

/// A type indicating whether a timed wait on a condition variable returned
/// due to a time out or not.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct WaitTimeoutResult(bool);

impl WaitTimeoutResult {
    /// Returns whether the wait was known to have timed out.
    #[inline]
    pub fn timed_out(&self) -> bool {
        self.0
    }
}

/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that thread must block.
///
/// Note that this module places one additional restriction over the system
/// condition variables: each condvar can be used with only one mutex at a
/// time. Any attempt to use multiple mutexes on the same condition variable
/// simultaneously will result in a runtime panic. However it is possible to
/// switch to a different mutex if there are no threads currently waiting on
/// the condition variable.
///
/// # Differences from the standard library `Condvar`
///
/// - No spurious wakeups: A wait will only return a non-timeout result if it
///   was woken up by `notify_one` or `notify_all`.
/// - `Condvar::notify_all` will only wake up a single thread, the rest are
///   requeued to wait for the `Mutex` to be unlocked by the thread that was
///   woken up.
/// - Only requires 1 word of space, whereas the standard library boxes the
///   `Condvar` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
///
/// # Examples
///
/// ```
/// use parking_lot::{Mutex, Condvar};
/// use std::sync::Arc;
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start
/// thread::spawn(move|| {
///     let &(ref lock, ref cvar) = &*pair2;
///     let mut started = lock.lock();
///     *started = true;
///     cvar.notify_one();
/// });
///
/// // wait for the thread to start up
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock();
/// while !*started {
///     cvar.wait(&mut started);
/// }
/// ```
pub struct Condvar {
    state: AtomicPtr<RawMutex>,
}

impl Condvar {
    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[cfg(feature = "nightly")]
    #[inline]
    pub const fn new() -> Condvar {
        Condvar {
            state: AtomicPtr::new(ptr::null_mut()),
        }
    }

    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[cfg(not(feature = "nightly"))]
    #[inline]
    pub fn new() -> Condvar {
        Condvar {
            state: AtomicPtr::new(ptr::null_mut()),
        }
    }

    /// Wakes up one blocked thread on this condvar.
    ///
    /// If there is a blocked thread on this condition variable, then it will
    /// be woken up from its call to `wait` or `wait_timeout`. Calls to
    /// `notify_one` are not buffered in any way.
    ///
    /// To wake up all threads, see `notify_all()`.
    #[inline]
    pub fn notify_one(&self) {
        // Nothing to do if there are no waiting threads
        if self.state.load(Ordering::Relaxed).is_null() {
            return;
        }

        self.notify_one_slow();
    }

    #[cold]
    #[inline(never)]
    fn notify_one_slow(&self) {
        unsafe {
            // Unpark one thread
            let addr = self as *const _ as usize;
            let callback = |result: UnparkResult| {
                // Clear our state if there are no more waiting threads
                if !result.have_more_threads {
                    self.state.store(ptr::null_mut(), Ordering::Relaxed);
                }
                TOKEN_NORMAL
            };
            parking_lot_core::unpark_one(addr, callback);
        }
    }

    /// Wakes up all blocked threads on this condvar.
    ///
    /// This method will ensure that any current waiters on the condition
    /// variable are awoken. Calls to `notify_all()` are not buffered in any
    /// way.
    ///
    /// To wake up only one thread, see `notify_one()`.
    #[inline]
    pub fn notify_all(&self) {
        // Nothing to do if there are no waiting threads
        let state = self.state.load(Ordering::Relaxed);
        if state.is_null() {
            return;
        }

        self.notify_all_slow(state);
    }

    #[cold]
    #[inline(never)]
    fn notify_all_slow(&self, mutex: *mut RawMutex) {
        unsafe {
            // Unpark one thread and requeue the rest onto the mutex
            let from = self as *const _ as usize;
            let to = mutex as usize;
            let validate = || {
                // Make sure that our atomic state still points to the same
                // mutex. If not then it means that all threads on the current
                // mutex were woken up and a new waiting thread switched to a
                // different mutex. In that case we can get away with doing
                // nothing.
                if self.state.load(Ordering::Relaxed) != mutex {
                    return RequeueOp::Abort;
                }

                // Clear our state since we are going to unpark or requeue all
                // threads.
                self.state.store(ptr::null_mut(), Ordering::Relaxed);

                // Unpark one thread if the mutex is unlocked, otherwise just
                // requeue everything to the mutex. This is safe to do here
                // since unlocking the mutex when the parked bit is set requires
                // locking the queue. There is the possibility of a race if the
                // mutex gets locked after we check, but that doesn't matter in
                // this case.
                if (*mutex).mark_parked_if_locked() {
                    RequeueOp::RequeueAll
                } else {
                    RequeueOp::UnparkOneRequeueRest
                }
            };
            let callback = |op, result: UnparkResult| {
                // If we requeued threads to the mutex, mark it as having
                // parked threads. The RequeueAll case is already handled above.
                if op == RequeueOp::UnparkOneRequeueRest && result.have_more_threads {
                    (*mutex).mark_parked();
                }
                TOKEN_NORMAL
            };
            parking_lot_core::unpark_requeue(from, to, validate, callback);
        }
    }

    /// Blocks the current thread until this condition variable receives a
    /// notification.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `mutex_guard`) and block the current thread. This means that any calls
    /// to `notify_*()` which happen logically after the mutex is unlocked are
    /// candidates to wake this thread up. When this function call returns, the
    /// lock specified will have been re-acquired.
    ///
    /// # Panics
    ///
    /// This function will panic if another thread is waiting on the `Condvar`
    /// with a different `Mutex` object.
    #[inline]
    pub fn wait<T: ?Sized>(&self, mutex_guard: &mut MutexGuard<T>) {
        self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, None);
    }

    /// Waits on this condition variable for a notification, timing out after
    /// the specified time instant.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked roughly until `timeout` is reached. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `timeout`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    ///
    /// # Panics
    ///
    /// This function will panic if another thread is waiting on the `Condvar`
    /// with a different `Mutex` object.
    #[inline]
    pub fn wait_until<T: ?Sized>(
        &self,
        mutex_guard: &mut MutexGuard<T>,
        timeout: Instant,
    ) -> WaitTimeoutResult {
        self.wait_until_internal(
            unsafe { MutexGuard::mutex(mutex_guard).raw() },
            Some(timeout),
        )
    }

    // This is a non-generic function to reduce the monomorphization cost of
    // using `wait_until`.
    fn wait_until_internal(
        &self,
        mutex: &RawMutex,
        timeout: Option<Instant>,
    ) -> WaitTimeoutResult {
        unsafe {
            let result;
            let mut bad_mutex = false;
            let mut requeued = false;
            {
                let addr = self as *const _ as usize;
                let lock_addr = mutex as *const _ as *mut _;
                let validate = || {
                    // Ensure we don't use two different mutexes with the same
                    // Condvar at the same time. This is done while locked to
                    // avoid races with notify_one
                    let state = self.state.load(Ordering::Relaxed);
                    if state.is_null() {
                        self.state.store(lock_addr, Ordering::Relaxed);
                    } else if state != lock_addr {
                        bad_mutex = true;
                        return false;
                    }
                    true
                };
                let before_sleep = || {
                    // Unlock the mutex before sleeping...
                    mutex.unlock();
                };
                let timed_out = |k, was_last_thread| {
                    // If we were requeued to a mutex, then we did not time out.
                    // We'll just park ourselves on the mutex again when we try
                    // to lock it later.
                    requeued = k != addr;

                    // If we were the last thread on the queue then we need to
                    // clear our state. This is normally done by the
                    // notify_{one,all} functions when not timing out.
                    if !requeued && was_last_thread {
                        self.state.store(ptr::null_mut(), Ordering::Relaxed);
                    }
                };
                result = parking_lot_core::park(
                    addr,
                    validate,
                    before_sleep,
                    timed_out,
                    DEFAULT_PARK_TOKEN,
                    timeout,
                );
            }

            // Panic if we tried to use multiple mutexes with a Condvar. Note
            // that at this point the MutexGuard is still locked. It will be
            // unlocked by the unwinding logic.
            if bad_mutex {
                panic!("attempted to use a condition variable with more than one mutex");
            }

            // ... and re-lock it once we are done sleeping
            if result == ParkResult::Unparked(TOKEN_HANDOFF) {
                deadlock::acquire_resource(mutex as *const _ as usize);
            } else {
                mutex.lock();
            }

            WaitTimeoutResult(!(result.is_unparked() || requeued))
        }
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked for roughly no longer than `timeout`. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `timeout`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    #[inline]
    pub fn wait_for<T: ?Sized>(
        &self,
        guard: &mut MutexGuard<T>,
        timeout: Duration,
    ) -> WaitTimeoutResult {
        self.wait_until(guard, Instant::now() + timeout)
    }
}

impl Default for Condvar {
    #[inline]
    fn default() -> Condvar {
        Condvar::new()
    }
}

impl fmt::Debug for Condvar {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.pad("Condvar { .. }")
    }
}

#[cfg(test)]
mod tests {
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;
    use std::time::{Duration, Instant};
    use {Condvar, Mutex};

    #[test]
    fn smoke() {
        let c = Condvar::new();
        c.notify_one();
        c.notify_all();
    }

    #[test]
    fn notify_one() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        c.wait(&mut g);
    }

    #[test]
    fn notify_all() {
        const N: usize = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move || {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cond.wait(&mut cnt);
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock();
        *cnt = 0;
        cond.notify_all();
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn wait_for() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let no_timeout = c.wait_for(&mut g, Duration::from_millis(1));
        assert!(no_timeout.timed_out());
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        let timeout_res = c.wait_for(&mut g, Duration::from_millis(u32::max_value() as u64));
        assert!(!timeout_res.timed_out());
        drop(g);
    }

    #[test]
    fn wait_until() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let no_timeout = c.wait_until(&mut g, Instant::now() + Duration::from_millis(1));
        assert!(no_timeout.timed_out());
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        let timeout_res = c.wait_until(
            &mut g,
            Instant::now() + Duration::from_millis(u32::max_value() as u64),
        );
        assert!(!timeout_res.timed_out());
        drop(g);
    }

    #[test]
    #[should_panic]
    fn two_mutexes() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let m3 = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        // Make sure we don't leave the child thread dangling
        struct PanicGuard<'a>(&'a Condvar);
        impl<'a> Drop for PanicGuard<'a> {
            fn drop(&mut self) {
                self.0.notify_one();
            }
        }

        let (tx, rx) = channel();
        let g = m.lock();
        let _t = thread::spawn(move || {
            let mut g = m2.lock();
            tx.send(()).unwrap();
            c2.wait(&mut g);
        });
        drop(g);
        rx.recv().unwrap();
        let _g = m.lock();
        let _guard = PanicGuard(&*c);
        let _ = c.wait(&mut m3.lock());
    }

    #[test]
    fn two_mutexes_disjoint() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let m3 = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        c.wait(&mut g);
        drop(g);

        let _ = c.wait_for(&mut m3.lock(), Duration::from_millis(1));
    }

    #[test]
    fn test_debug_condvar() {
        let c = Condvar::new();
        assert_eq!(format!("{:?}", c), "Condvar { .. }");
    }
}