1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
//! A library that makes linear color calculations and conversion easy and //! accessible for anyone. It uses the type system to enforce correctness and //! to avoid mistakes, such as mixing incompatible color types. //! //! # It's Never "Just RGB" //! //! Colors in, for example, images are often "gamma corrected" or stored in //! sRGB format as a compression method and to prevent banding. This is also a //! bit of a legacy from the ages of the CRT monitors, where the output from //! the electron gun was nonlinear. The problem is that these formats doesn't //! represent the actual intensities, and the compression has to be reverted to //! make sure that any operations on the colors are accurate. This library uses //! a completely linear work flow, and comes with the tools for transitioning //! between linear and non-linear RGB. //! //! Adding to that, there are more than one kind of non-linear RGB. Ironically //! enough, this turns RGB into one of the most complex color spaces. //! //! For example, this does not work: //! //! ```rust //! // An alias for Rgb<Srgb>, which is what most pictures store. //! use palette::Srgb; //! //! let orangeish = Srgb::new(1.0, 0.6, 0.0); //! let blueish = Srgb::new(0.0, 0.2, 1.0); //! // let whateve_it_becomes = orangeish + blueish; //! ``` //! //! Instead, they have to be made linear before adding: //! //! ```rust //! // An alias for Rgb<Srgb>, which is what most pictures store. //! use palette::{Pixel, Srgb}; //! //! let orangeish = Srgb::new(1.0, 0.6, 0.0).into_linear(); //! let blueish = Srgb::new(0.0, 0.2, 1.0).into_linear(); //! let whateve_it_becomes = orangeish + blueish; //! //! // Encode the result back into sRGB and create a byte array //! let pixel: [u8; 3] = Srgb::from_linear(whateve_it_becomes) //! .into_format() //! .into_raw(); //! ``` //! //! # Transparency //! //! There are many cases where pixel transparency is important, but there are //! also many cases where it becomes a dead weight, if it's always stored //! together with the color, but not used. Palette has therefore adopted a //! structure where the transparency component (alpha) is attachable using the //! [`Alpha`](struct.Alpha.html) type, instead of having copies of each color //! space. //! //! This approach comes with the extra benefit of allowing operations to //! selectively affect the alpha component: //! //! ```rust //! use palette::{LinSrgb, LinSrgba}; //! //! let mut c1 = LinSrgba::new(1.0, 0.5, 0.5, 0.8); //! let c2 = LinSrgb::new(0.5, 1.0, 1.0); //! //! c1.color = c1.color * c2; //Leave the alpha as it is //! c1.blue += 0.2; //The color components can easily be accessed //! c1 = c1 * 0.5; //Scale both the color and the alpha //! ``` //! //! # A Basic Workflow //! //! The overall workflow can be divided into three steps, where the first and //! last may be taken care of by other parts of the application: //! //! ```text //! Decoding -> Processing -> Encoding //! ``` //! //! ## 1. Decoding //! //! Find out what the source format is and convert it to a linear color space. //! There may be a specification, such as when working with SVG or CSS. //! //! When working with RGB or gray scale (luma): //! //! * If you are asking your user to enter an RGB value, you are in a gray zone //! where it depends on the context. It's usually safe to assume sRGB, but //! sometimes it's already linear. //! //! * If you are decoding an image, there may be some meta data that gives you //! the necessary details. Otherwise it's most commonly sRGB. Usually you //! will end up with a slice or vector with RGB bytes, which can easily be //! converted to Palette colors: //! //! ```rust //! # let mut image_buffer: Vec<u8> = vec![]; //! use palette::{Srgb, Pixel}; //! //! // This works for any (even non-RGB) color type that can have the //! // buffer element type as component. //! let color_buffer: &mut [Srgb<u8>] = Pixel::from_raw_slice_mut(&mut image_buffer); //! ``` //! //! * If you are getting your colors from the GPU, in a game or other graphical //! application, or if they are otherwise generated by the application, then //! chances are that they are already linear. Still, make sure to check that //! they are not being encoded somewhere. //! //! When working with other colors: //! //! * For HSL, HSV, HWB: Check if they are based on any other color space than //! sRGB, such as Adobe or Apple RGB. //! //! * For any of the CIE color spaces, check for a specification of white point //! and light source. These are necessary for converting to RGB and other //! colors, that depend on perception and "viewing devices". Common defaults //! are the D65 light source and the sRGB white point. The Palette defaults //! should take you far. //! //! ## 2. Processing //! //! When your color has been decoded into some Palette type, it's ready for //! processing. This includes things like blending, hue shifting, darkening and //! conversion to other formats. Just make sure that your non-linear RGB is //! made linear first (`my_srgb.into_linear()`), to make the operations //! available. //! //! Different color spaced have different capabilities, pros and cons. You may //! have to experiment a bit (or look at the example programs) to find out what //! gives the desired result. //! //! ## 3. Encoding //! //! When the desired processing is done, it's time to encode the colors back //! into some image format. The same rules applies as for the decoding, but the //! process reversed. //! #![doc(html_root_url = "https://docs.rs/palette/0.4.1/palette/")] #![cfg_attr(feature = "strict", deny(missing_docs))] #![cfg_attr(feature = "strict", deny(warnings))] #[cfg_attr(test, macro_use)] extern crate approx; #[macro_use] extern crate palette_derive; extern crate num_traits; #[cfg(feature = "phf")] extern crate phf; #[cfg(feature = "serde")] #[macro_use] extern crate serde; #[cfg(all(test, feature = "serde"))] extern crate serde_json; use num_traits::{Float, NumCast, ToPrimitive, Zero}; use approx::ApproxEq; use blend::PreAlpha; use encoding::Linear; use luma::Luma; use rgb::{Rgb, RgbSpace, Rgba}; #[doc(hidden)] pub use palette_derive::*; pub use alpha::Alpha; pub use blend::Blend; pub use gradient::Gradient; pub use hsl::{Hsl, Hsla}; pub use hsv::{Hsv, Hsva}; pub use hwb::{Hwb, Hwba}; pub use lab::{Lab, Laba}; pub use lch::{Lch, Lcha}; pub use luma::{GammaLuma, GammaLumaa, LinLuma, LinLumaa, SrgbLuma, SrgbLumaa}; pub use rgb::{GammaSrgb, GammaSrgba, LinSrgb, LinSrgba, Srgb, Srgba}; pub use xyz::{Xyz, Xyza}; pub use yxy::{Yxy, Yxya}; pub use convert::{FromColor, IntoColor}; pub use encoding::pixel::Pixel; pub use hues::{LabHue, RgbHue}; pub use matrix::Mat3; //Helper macro for checking ranges and clamping. #[cfg(test)] macro_rules! assert_ranges { (@make_tuple $first:pat, $next:ident,) => (($first, $next)); (@make_tuple $first:pat, $next:ident, $($rest:ident,)*) => ( assert_ranges!(@make_tuple ($first, $next), $($rest,)*) ); ( $ty:ident < $($ty_params:ty),+ >; limited {$($limited:ident: $limited_from:expr => $limited_to:expr),+} limited_min {$($limited_min:ident: $limited_min_from:expr => $limited_min_to:expr),*} unlimited {$($unlimited:ident: $unlimited_from:expr => $unlimited_to:expr),*} ) => ( { use std::iter::repeat; use Limited; { print!("checking below limits ... "); $( let from = $limited_from; let to = $limited_to; let diff = to - from; let $limited = (1..11).map(|i| from - (i as f64 / 10.0) * diff); )+ $( let from = $limited_min_from; let to = $limited_min_to; let diff = to - from; let $limited_min = (1..11).map(|i| from - (i as f64 / 10.0) * diff); )* $( let from = $unlimited_from; let to = $unlimited_to; let diff = to - from; let $unlimited = (1..11).map(|i| from - (i as f64 / 10.0) * diff); )* for assert_ranges!(@make_tuple (), $($limited,)+ $($limited_min,)* $($unlimited,)* ) in repeat(()) $(.zip($limited))+ $(.zip($limited_min))* $(.zip($unlimited))* { let c: $ty<$($ty_params),+> = $ty { $($limited: $limited.into(),)+ $($limited_min: $limited_min.into(),)* $($unlimited: $unlimited.into(),)* ..$ty::default() //This prevents exhaustiveness checking }; let clamped = c.clamp(); let expected: $ty<$($ty_params),+> = $ty { $($limited: $limited_from.into(),)+ $($limited_min: $limited_min_from.into(),)* $($unlimited: $unlimited.into(),)* ..$ty::default() //This prevents exhaustiveness checking }; assert!(!c.is_valid()); assert_relative_eq!(clamped, expected); } println!("ok") } { print!("checking within limits ... "); $( let from = $limited_from; let to = $limited_to; let diff = to - from; let $limited = (0..11).map(|i| from + (i as f64 / 10.0) * diff); )+ $( let from = $limited_min_from; let to = $limited_min_to; let diff = to - from; let $limited_min = (0..11).map(|i| from + (i as f64 / 10.0) * diff); )* $( let from = $unlimited_from; let to = $unlimited_to; let diff = to - from; let $unlimited = (0..11).map(|i| from + (i as f64 / 10.0) * diff); )* for assert_ranges!(@make_tuple (), $($limited,)+ $($limited_min,)* $($unlimited,)* ) in repeat(()) $(.zip($limited))+ $(.zip($limited_min))* $(.zip($unlimited))* { let c: $ty<$($ty_params),+> = $ty { $($limited: $limited.into(),)+ $($limited_min: $limited_min.into(),)* $($unlimited: $unlimited.into(),)* ..$ty::default() //This prevents exhaustiveness checking }; let clamped = c.clamp(); assert!(c.is_valid()); assert_relative_eq!(clamped, c); } println!("ok") } { print!("checking above limits ... "); $( let from = $limited_from; let to = $limited_to; let diff = to - from; let $limited = (1..11).map(|i| to + (i as f64 / 10.0) * diff); )+ $( let from = $limited_min_from; let to = $limited_min_to; let diff = to - from; let $limited_min = (1..11).map(|i| to + (i as f64 / 10.0) * diff); )* $( let from = $unlimited_from; let to = $unlimited_to; let diff = to - from; let $unlimited = (1..11).map(|i| to + (i as f64 / 10.0) * diff); )* for assert_ranges!(@make_tuple (), $($limited,)+ $($limited_min,)* $($unlimited,)* ) in repeat(()) $(.zip($limited))+ $(.zip($limited_min))* $(.zip($unlimited))* { let c: $ty<$($ty_params),+> = $ty { $($limited: $limited.into(),)+ $($limited_min: $limited_min.into(),)* $($unlimited: $unlimited.into(),)* ..$ty::default() //This prevents exhaustiveness checking }; let clamped = c.clamp(); let expected: $ty<$($ty_params),+> = $ty { $($limited: $limited_to.into(),)+ $($limited_min: $limited_min.into(),)* $($unlimited: $unlimited.into(),)* ..$ty::default() //This prevents exhaustiveness checking }; assert!(!c.is_valid()); assert_relative_eq!(clamped, expected); } println!("ok") } } ); } #[macro_use] mod macros; pub mod blend; pub mod gradient; #[cfg(feature = "named")] pub mod named; mod alpha; mod hsl; mod hsv; mod hwb; mod lab; mod lch; pub mod luma; pub mod rgb; mod xyz; mod yxy; mod hues; pub mod chromatic_adaptation; mod convert; pub mod encoding; mod equality; mod matrix; pub mod white_point; macro_rules! make_color { ($( #[$variant_comment:meta] $variant: ident < $variant_ty_param:ty > $(and $($representations:ident),+ )* {$( #[$ctor_comment:meta] $ctor_name:ident $( <$( $ty_params:ident: $ty_param_traits:ident $( <$( $ty_inner_traits:ident ),*> )*),*> )* ($($ctor_field:ident : $ctor_ty:ty),*) [alpha: $alpha_ty:ty] => $ctor_original:ident; )+} )+) => ( ///Generic color with an alpha component. See the [`Colora` implementation in `Alpha`](struct.Alpha.html#Colora). pub type Colora<S = encoding::Srgb, T = f32> = Alpha<Color<S, T>, T>; ///A generic color type. /// ///The `Color` may belong to any color space and it may change ///depending on which operation is performed. That makes it immune to ///the "without conversion" rule of the operations it supports. The ///color spaces are selected as follows: /// /// * `Mix`: RGB for no particular reason, except that it's intuitive. /// * `Shade`: CIE L\*a\*b\* for its luminance component. /// * `Hue` and `GetHue`: CIE L\*C\*h° for its hue component and how it preserves the apparent lightness. /// * `Saturate`: CIE L\*C\*h° for its chromaticity component and how it preserves the apparent lightness. /// ///It's not recommended to use `Color` when full control is necessary, ///but it can easily be converted to a fixed color space in those ///cases. #[derive(Debug)] pub enum Color<S = encoding::Srgb, T = f32> where T: Float + Component, S: RgbSpace, { $(#[$variant_comment] $variant($variant<$variant_ty_param, T>)),+ } impl<S, T> Copy for Color<S, T> where S: RgbSpace, T: Float + Component, {} impl<S, T> Clone for Color<S, T> where S: RgbSpace, T: Float + Component, { fn clone(&self) -> Color<S, T> { *self } } impl<S, T> Default for Color<S, T> where S: RgbSpace, T: Float + Component, { fn default() -> Color<S, T> { Color::Rgb(Default::default()) } } impl<T: Float + Component> Color<encoding::Srgb, T> { $( $( #[$ctor_comment] pub fn $ctor_name$(<$($ty_params : $ty_param_traits$( <$( $ty_inner_traits ),*> )*),*>)*($($ctor_field: $ctor_ty),*) -> Color<encoding::Srgb, T> { Color::$variant($variant::$ctor_original($($ctor_field),*)) } )+ )+ } ///<span id="Colora"></span>[`Colora`](type.Colora.html) implementations. impl<T: Float + Component> Alpha<Color<encoding::Srgb, T>, T> { $( $( #[$ctor_comment] pub fn $ctor_name$(<$($ty_params : $ty_param_traits$( <$( $ty_inner_traits ),*> )*),*>)*($($ctor_field: $ctor_ty,)* alpha: $alpha_ty) -> Colora<encoding::Srgb, T> { Alpha::<$variant<_, T>, T>::$ctor_original($($ctor_field,)* alpha).into() } )+ )+ } impl<S, T> Mix for Color<S, T> where T: Float + Component, S: RgbSpace, { type Scalar = T; fn mix(&self, other: &Color<S, T>, factor: T) -> Color<S, T> { Rgb::<Linear<S>, T>::from(*self).mix(&Rgb::<Linear<S>, T>::from(*other), factor).into() } } impl<S, T> Shade for Color<S, T> where T: Float + Component, S: RgbSpace, { type Scalar = T; fn lighten(&self, amount: T) -> Color<S, T> { Lab::from(*self).lighten(amount).into() } } impl<S, T> GetHue for Color<S, T> where T: Float + Component, S: RgbSpace, { type Hue = LabHue<T>; fn get_hue(&self) -> Option<LabHue<T>> { Lch::from(*self).get_hue() } } impl<S, T> Hue for Color<S, T> where T: Float + Component, S: RgbSpace, { fn with_hue<H: Into<Self::Hue>>(&self, hue: H) -> Color<S, T> { Lch::from(*self).with_hue(hue).into() } fn shift_hue<H: Into<Self::Hue>>(&self, amount: H) -> Color<S, T> { Lch::from(*self).shift_hue(amount).into() } } impl<S, T> Saturate for Color<S, T> where T: Float + Component, S: RgbSpace, { type Scalar = T; fn saturate(&self, factor: T) -> Color<S, T> { Lch::from(*self).saturate(factor).into() } } impl<S, T> Blend for Color<S, T> where T: Float + Component, S: RgbSpace, { type Color = Rgb<Linear<S>, T>; fn into_premultiplied(self) -> PreAlpha<Rgb<Linear<S>, T>, T> { Rgba::<Linear<S>, T>::from(self).into() } fn from_premultiplied(color: PreAlpha<Rgb<Linear<S>, T>, T>) -> Self { Rgba::<Linear<S>, T>::from(color).into() } } impl<S, T> ApproxEq for Color<S, T> where T: Float + Component + ApproxEq, T::Epsilon: Float, S: RgbSpace, { type Epsilon = T::Epsilon; fn default_epsilon() -> Self::Epsilon { T::default_epsilon() } fn default_max_relative() -> Self::Epsilon { T::default_max_relative() } fn default_max_ulps() -> u32 { T::default_max_ulps() } fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool { match (*self, *other) { $((Color::$variant(ref s), Color::$variant(ref o)) => s.relative_eq(o, epsilon, max_relative),)+ _ => false } } fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool{ match (*self, *other) { $((Color::$variant(ref s), Color::$variant(ref o)) => s.ulps_eq(o, epsilon, max_ulps),)+ _ => false } } } $( impl<S, T> From<$variant<$variant_ty_param, T>> for Color<S, T> where T: Float + Component, S: RgbSpace, { fn from(color: $variant<$variant_ty_param, T>) -> Color<S, T> { Color::$variant(color) } } impl<S, T> From<Alpha<$variant<$variant_ty_param, T>, T>> for Color<S, T> where T: Float + Component, S: RgbSpace, { fn from(color: Alpha<$variant<$variant_ty_param, T>,T>) -> Color<S, T> { Color::$variant(color.color) } } impl<S, T> From<Alpha<$variant<$variant_ty_param, T>, T>> for Alpha<Color<S, T>,T> where T: Float + Component, S: RgbSpace, { fn from(color: Alpha<$variant<$variant_ty_param, T>,T>) -> Alpha<Color<S, T>,T> { Alpha { color: Color::$variant(color.color), alpha: color.alpha, } } } )+ ) } fn clamp<T: PartialOrd>(v: T, min: T, max: T) -> T { if v < min { min } else if v > max { max } else { v } } make_color! { ///Linear luminance. Luma<Linear<S::WhitePoint>> { ///Linear luminance. linear_y(luma: T)[alpha: T] => new; } ///Linear RGB. Rgb<Linear<S>> { ///Linear RGB. linear_rgb(red: T, green: T, blue: T)[alpha: T] => new; } ///CIE 1931 XYZ. Xyz<S::WhitePoint> { ///CIE XYZ. xyz(x: T, y: T, z: T)[alpha: T] => new; } ///CIE 1931 Yxy. Yxy<S::WhitePoint> { ///CIE Yxy. yxy(x: T, y: T, luma: T)[alpha: T] => new; } ///CIE L\*a\*b\* (CIELAB). Lab<S::WhitePoint> { ///CIE L\*a\*b\*. lab(l: T, a: T, b: T)[alpha: T] => new; } ///CIE L\*C\*h°, a polar version of CIE L\*a\*b\*. Lch<S::WhitePoint> { ///CIE L\*C\*h°. lch(l: T, chroma: T, hue: LabHue<T>)[alpha: T] => new; } ///Linear HSV, a cylindrical version of RGB. Hsv<S> { ///Linear HSV. hsv(hue: RgbHue<T>, saturation: T, value: T)[alpha: T] => new; } ///Linear HSL, a cylindrical version of RGB. Hsl<S> { ///Linear HSL. hsl(hue: RgbHue<T>, saturation: T, lightness: T)[alpha: T] => new; } ///Linear HWB, an intuitive cylindrical version of RGB. Hwb<S> { ///Linear HWB. hwb(hue: RgbHue<T>, whiteness: T, balckness: T)[alpha: T] => new; } } ///A trait for clamping and checking if colors are within their ranges. pub trait Limited { ///Check if the color's components are within the expected ranges. fn is_valid(&self) -> bool; ///Return a new color where the components has been clamped to the nearest ///valid values. fn clamp(&self) -> Self; ///Clamp the color's components to the nearest valid values. fn clamp_self(&mut self); } /// A trait for linear color interpolation. /// /// ``` /// use palette::{LinSrgb, Mix}; /// /// let a = LinSrgb::new(0.0, 0.5, 1.0); /// let b = LinSrgb::new(1.0, 0.5, 0.0); /// /// assert_eq!(a.mix(&b, 0.0), a); /// assert_eq!(a.mix(&b, 0.5), LinSrgb::new(0.5, 0.5, 0.5)); /// assert_eq!(a.mix(&b, 1.0), b); /// ``` pub trait Mix { ///The type of the mixing factor. type Scalar: Float; ///Mix the color with an other color, by `factor`. /// ///`factor` sould be between `0.0` and `1.0`, where `0.0` will result in ///the same color as `self` and `1.0` will result in the same color as ///`other`. fn mix(&self, other: &Self, factor: Self::Scalar) -> Self; } /// The `Shade` trait allows a color to be lightened or darkened. /// /// ``` /// use palette::{LinSrgb, Shade}; /// /// let a = LinSrgb::new(0.4, 0.4, 0.4); /// let b = LinSrgb::new(0.6, 0.6, 0.6); /// /// assert_eq!(a.lighten(0.1), b.darken(0.1)); /// ``` pub trait Shade: Sized { ///The type of the lighten/darken amount. type Scalar: Float; ///Lighten the color by `amount`. fn lighten(&self, amount: Self::Scalar) -> Self; ///Darken the color by `amount`. fn darken(&self, amount: Self::Scalar) -> Self { self.lighten(-amount) } } /// A trait for colors where a hue may be calculated. /// /// ``` /// use palette::{GetHue, LinSrgb}; /// /// let red = LinSrgb::new(1.0f32, 0.0, 0.0); /// let green = LinSrgb::new(0.0f32, 1.0, 0.0); /// let blue = LinSrgb::new(0.0f32, 0.0, 1.0); /// let gray = LinSrgb::new(0.5f32, 0.5, 0.5); /// /// assert_eq!(red.get_hue(), Some(0.0.into())); /// assert_eq!(green.get_hue(), Some(120.0.into())); /// assert_eq!(blue.get_hue(), Some(240.0.into())); /// assert_eq!(gray.get_hue(), None); /// ``` pub trait GetHue { ///The kind of hue unit this color space uses. /// ///The hue is most commonly calculated as an angle around a color circle ///and may not always be uniform between color spaces. It's therefore not ///recommended to take one type of hue and apply it to a color space that ///expects an other. type Hue; ///Calculate a hue if possible. /// ///Colors in the gray scale has no well defined hue and should preferably ///return `None`. fn get_hue(&self) -> Option<Self::Hue>; } ///A trait for colors where the hue can be manipulated without conversion. pub trait Hue: GetHue { ///Return a new copy of `self`, but with a specific hue. fn with_hue<H: Into<Self::Hue>>(&self, hue: H) -> Self; ///Return a new copy of `self`, but with the hue shifted by `amount`. fn shift_hue<H: Into<Self::Hue>>(&self, amount: H) -> Self; } /// A trait for colors where the saturation (or chroma) can be manipulated /// without conversion. /// /// ``` /// use palette::{Hsv, Saturate}; /// /// let a = Hsv::new(0.0, 0.25, 1.0); /// let b = Hsv::new(0.0, 1.0, 1.0); /// /// assert_eq!(a.saturate(1.0), b.desaturate(0.5)); /// ``` pub trait Saturate: Sized { ///The type of the (de)saturation factor. type Scalar: Float; ///Increase the saturation by `factor`. fn saturate(&self, factor: Self::Scalar) -> Self; ///Decrease the saturation by `factor`. fn desaturate(&self, factor: Self::Scalar) -> Self { self.saturate(-factor) } } ///Perform a unary or binary operation on each component of a color. pub trait ComponentWise { ///The scalar type for color components. type Scalar; ///Perform a binary operation on this and an other color. fn component_wise<F: FnMut(Self::Scalar, Self::Scalar) -> Self::Scalar>( &self, other: &Self, f: F, ) -> Self; ///Perform a unary operation on this color. fn component_wise_self<F: FnMut(Self::Scalar) -> Self::Scalar>(&self, f: F) -> Self; } /// Common trait for color components. pub trait Component: Copy + Zero + PartialOrd + NumCast { /// True if the max intensity is also the highest possible value of the /// type. Conversion to limited types requires clamping. const LIMITED: bool; /// The highest displayable value this component type can reach. Higher /// values are allowed, but they may be lowered to this before /// converting to another format. fn max_intensity() -> Self; /// Convert into another color component type, including scaling. fn convert<T: Component>(&self) -> T; } impl Component for f32 { const LIMITED: bool = false; fn max_intensity() -> Self { 1.0 } fn convert<T: Component>(&self) -> T { let scaled = *self * cast::<f32, _>(T::max_intensity()); if T::LIMITED { cast(clamp(scaled, 0.0, cast(T::max_intensity()))) } else { cast(scaled) } } } impl Component for f64 { const LIMITED: bool = false; fn max_intensity() -> Self { 1.0 } fn convert<T: Component>(&self) -> T { let scaled = *self * cast::<f64, _>(T::max_intensity()); if T::LIMITED { cast(clamp(scaled, 0.0, cast(T::max_intensity()))) } else { cast(scaled) } } } impl Component for u8 { const LIMITED: bool = true; fn max_intensity() -> Self { std::u8::MAX } fn convert<T: Component>(&self) -> T { let scaled = cast::<f64, _>(T::max_intensity()) * (cast::<f64, _>(*self) / cast::<f64, _>(Self::max_intensity())); if T::LIMITED { cast(clamp(scaled, 0.0, cast(T::max_intensity()))) } else { cast(scaled) } } } impl Component for u16 { const LIMITED: bool = true; fn max_intensity() -> Self { std::u16::MAX } fn convert<T: Component>(&self) -> T { let scaled = cast::<f64, _>(T::max_intensity()) * (cast::<f64, _>(*self) / cast::<f64, _>(Self::max_intensity())); if T::LIMITED { cast(clamp(scaled, 0.0, cast(T::max_intensity()))) } else { cast(scaled) } } } impl Component for u32 { const LIMITED: bool = true; fn max_intensity() -> Self { std::u32::MAX } fn convert<T: Component>(&self) -> T { let scaled = cast::<f64, _>(T::max_intensity()) * (cast::<f64, _>(*self) / cast::<f64, _>(Self::max_intensity())); if T::LIMITED { cast(clamp(scaled, 0.0, cast(T::max_intensity()))) } else { cast(scaled) } } } impl Component for u64 { const LIMITED: bool = true; fn max_intensity() -> Self { std::u64::MAX } fn convert<T: Component>(&self) -> T { let scaled = cast::<f64, _>(T::max_intensity()) * (cast::<f64, _>(*self) / cast::<f64, _>(Self::max_intensity())); if T::LIMITED { cast(clamp(scaled, 0.0, cast(T::max_intensity()))) } else { cast(scaled) } } } /// A convenience function to convert a constant number to Float Type #[inline] fn cast<T: NumCast, P: ToPrimitive>(prim: P) -> T { NumCast::from(prim).unwrap() }