1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
//!Pixel encodings and pixel format conversion. pub use self::raw::*; mod raw; /// Represents colors that can be serialized and deserialized from raw color components. /// /// This uses bit by bit conversion, so make sure that anything that implements it can be /// represented as a contiguous sequence of a single type `T`. This is most safely done using /// `#[derive(Pixel)]`. /// /// # Deriving /// /// `Pixel` can be automatically derived. The only requirements are that the type is a `struct`, /// that it has a `#[repr(C)]` attribute, and that all of its fields have the same types. It stays /// on the conservative side and will show an error if any of those requirements are not fulfilled. /// If some fields have different types, but the same memory layout, or are zero-sized, they can be /// marked with attributes to show that their types are safe to use. /// /// ## Field Attributes /// /// * `#[palette_unsafe_same_layout_as = "SomeType"]`: Mark the field as having the same memory /// layout as `SomeType`. /// /// **Unsafety:** corrupt data and undefined behavior may occur if this is not true! /// /// * `#[palette_unsafe_zero_sized]`: Mark the field as being zero-sized, and thus not taking up /// any memory space. This means that it can be ignored. /// /// **Unsafety:** corrupt data and undefined behavior may occur if this is not true! /// /// ## Examples /// /// Basic use: /// /// ```rust /// #[macro_use] /// extern crate palette; /// /// use palette::Pixel; /// /// #[derive(PartialEq, Debug, Pixel)] /// #[repr(C)] /// struct MyCmyk { /// cyan: f32, /// magenta: f32, /// yellow: f32, /// key: f32, /// } /// /// fn main() { /// let buffer = [0.1, 0.2, 0.3, 0.4]; /// let color = MyCmyk::from_raw(&buffer); /// /// assert_eq!( /// color, /// &MyCmyk { /// cyan: 0.1, /// magenta: 0.2, /// yellow: 0.3, /// key: 0.4, /// } /// ); /// } /// ``` /// /// Heterogenous field types: /// /// ```rust /// #[macro_use] /// extern crate palette; /// /// use std::marker::PhantomData; /// /// use palette::{Pixel, RgbHue}; /// use palette::rgb::RgbStandard; /// use palette::encoding::Srgb; /// /// #[derive(PartialEq, Debug, Pixel)] /// #[repr(C)] /// struct MyCoolColor<S: RgbStandard> { /// #[palette_unsafe_zero_sized] /// standard: PhantomData<S>, /// // RgbHue is a wrapper with `#[repr(C)]`, so it can safely /// // be converted straight from `f32`. /// #[palette_unsafe_same_layout_as = "f32"] /// hue: RgbHue<f32>, /// lumen: f32, /// chroma: f32, /// } /// /// fn main() { /// let buffer = [172.0, 100.0, 0.3]; /// let color = MyCoolColor::<Srgb>::from_raw(&buffer); /// /// assert_eq!( /// color, /// &MyCoolColor { /// hue: 172.0.into(), /// lumen: 100.0, /// chroma: 0.3, /// standard: PhantomData, /// } /// ); /// } /// ``` pub unsafe trait Pixel<T>: Sized { /// The number of color channels. const CHANNELS: usize; /// Cast as a reference to raw color components. #[inline] fn as_raw<P: RawPixel<T> + ?Sized>(&self) -> &P { unsafe { P::from_raw_parts(self as *const Self as *const T, Self::CHANNELS) } } /// Cast as a mutable reference to raw color components. #[inline] fn as_raw_mut<P: RawPixel<T> + ?Sized>(&mut self) -> &mut P { unsafe { P::from_raw_parts_mut(self as *mut Self as *mut T, Self::CHANNELS) } } /// Convert from raw color components. #[inline] fn into_raw<P: RawPixelSized<T>>(self) -> P { assert_eq!(P::CHANNELS, Self::CHANNELS); assert_eq!(::std::mem::size_of::<P>(), ::std::mem::size_of::<Self>()); assert_eq!(::std::mem::align_of::<P>(), ::std::mem::align_of::<Self>()); let converted = unsafe { ::std::ptr::read(&self as *const Self as *const P) }; // Just to be sure... ::std::mem::forget(self); converted } /// Cast from a reference to raw color components. #[inline] fn from_raw<P: RawPixel<T> + ?Sized>(pixel: &P) -> &Self { assert!( pixel.channels() >= Self::CHANNELS, "not enough color channels" ); unsafe { &*(pixel.as_ptr() as *const Self) } } /// Cast from a mutable reference to raw color components. #[inline] fn from_raw_mut<P: RawPixel<T> + ?Sized>(pixel: &mut P) -> &mut Self { assert!(pixel.channels() >= Self::CHANNELS); unsafe { &mut *(pixel.as_mut_ptr() as *mut Self) } } /// Cast a slice of raw color components to a slice of colors. /// /// ```rust /// use palette::{Pixel, Srgb}; /// /// let raw = &[255u8, 128, 64, 10, 20, 30]; /// let colors = Srgb::from_raw_slice(raw); /// /// assert_eq!(colors.len(), 2); /// assert_eq!(colors[0].blue, 64); /// assert_eq!(colors[1].red, 10); /// ``` #[inline] fn from_raw_slice(slice: &[T]) -> &[Self] { assert_eq!(slice.len() % Self::CHANNELS, 0); let new_length = slice.len() / Self::CHANNELS; unsafe { ::std::slice::from_raw_parts(slice.as_ptr() as *const Self, new_length) } } /// Cast a mutable slice of raw color components to a mutable slice of colors. /// /// ```rust /// use palette::{Pixel, Srgb}; /// /// let raw = &mut [255u8, 128, 64, 10, 20, 30]; /// { /// let colors = Srgb::from_raw_slice_mut(raw); /// assert_eq!(colors.len(), 2); /// /// // These changes affects the raw slice, since they are the same data /// colors[0].blue = 100; /// colors[1].red = 200; /// } /// /// // Notice the two values in the middle: /// assert_eq!(raw, &[255, 128, 100, 200, 20, 30]); /// ``` #[inline] fn from_raw_slice_mut(slice: &mut [T]) -> &mut [Self] { assert_eq!(slice.len() % Self::CHANNELS, 0); let new_length = slice.len() / Self::CHANNELS; unsafe { ::std::slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut Self, new_length) } } /// Cast a slice of colors to a slice of raw color components. /// /// ```rust /// use palette::{Pixel, Srgb}; /// /// let colors = &[Srgb::new(255u8, 128, 64), Srgb::new(10, 20, 30)]; /// let raw = Srgb::into_raw_slice(colors); /// /// assert_eq!(raw.len(), 6); /// assert_eq!(raw, &[255u8, 128, 64, 10, 20, 30]); /// ``` #[inline] fn into_raw_slice(slice: &[Self]) -> &[T] { let new_length = slice.len() * Self::CHANNELS; unsafe { ::std::slice::from_raw_parts(slice.as_ptr() as *const T, new_length) } } /// Cast a mutable slice of colors to a mutable slice of raw color components. /// /// ```rust /// use palette::{Pixel, Srgb}; /// /// let colors = &mut [Srgb::new(255u8, 128, 64), Srgb::new(10, 20, 30)]; /// { /// let raw = Srgb::into_raw_slice_mut(colors); /// assert_eq!(raw.len(), 6); /// /// // These changes affects the color slice, since they are the same data /// raw[2] = 100; /// raw[3] = 200; /// } /// /// assert_eq!(colors[0].blue, 100); /// assert_eq!(colors[1].red, 200); /// ``` #[inline] fn into_raw_slice_mut(slice: &mut [Self]) -> &mut [T] { let new_length = slice.len() * Self::CHANNELS; unsafe { ::std::slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut T, new_length) } } }