1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
use num_traits::Float; use {Component, Hsl, Hsv, Hwb, Lab, Lch, Xyz, Yxy}; use white_point::{D65, WhitePoint}; use rgb::{Rgb, RgbSpace}; use luma::Luma; use encoding::Linear; /// FromColor provides conversion from the colors. /// /// It requires from_xyz, when implemented manually, and derives conversion to other colors as a /// default from this. These defaults must be overridden when direct conversion exists between /// colors. For example, Luma has direct conversion to LinRgb. So from_rgb conversion for Luma and /// from_luma for LinRgb is implemented directly. The from for the same color must override /// the default. For example, from_rgb for LinRgb will convert via Xyz which needs to be overridden /// with self to avoid the unnecessary conversion. /// /// # Deriving /// /// `FromColor` can be derived in a mostly automatic way. The strength of deriving it is that it /// will also derive `From` implementations for all of the `palette` color types. The minimum /// requirement is to implement `From<Xyz>`, but it can also be customized to make use of generics /// and have other manual implementations. /// /// ## Item Attributes /// /// * `#[palette_manual_from(Luma, Rgb = "from_rgb_internal")]`: Specifies the color types that /// the the custom color type already has `From` implementations for. Adding `= "function_name"` /// tells it to use that function instead of a `From` implementation. The default, when omitted, /// is to require `From<Xyz>` to be implemented. /// /// * `#[palette_white_point = "some::white_point::Type"]`: Sets the white point type that should /// be used when deriving. The default is `D65`, but it may be any other type, including /// type parameters. /// /// * `#[palette_component = "some::component::Type"]`: Sets the color component type that should /// be used when deriving. The default is `f32`, but it may be any other type, including /// type parameters. /// /// * `#[palette_rgb_space = "some::rgb_space::Type"]`: Sets the RGB space type that should /// be used when deriving. The default is to either use `Srgb` or a best effort to convert between /// spaces, so sometimes it has to be set to a specific type. This does also accept type parameters. /// /// ## Field Attributes /// /// * `#[palette_alpha]`: Specifies that the field is the color's transparency value. /// /// ## Examples /// /// Minimum requirements implementation: /// /// ```rust /// #[macro_use] /// extern crate palette; /// /// use palette::{Srgb, Xyz}; /// /// /// A custom version of Xyz that stores integer values from 0 to 100. /// #[derive(PartialEq, Debug, FromColor)] /// struct Xyz100 { /// x: u8, /// y: u8, /// z: u8, /// } /// /// // We have to at least implement conversion from Xyz if we don't /// // specify anything else, using the `palette_manual_from` attribute. /// impl From<Xyz> for Xyz100 { /// fn from(color: Xyz) -> Self { /// let scaled = color * 100.0; /// Xyz100 { /// x: scaled.x.max(0.0).min(100.0) as u8, /// y: scaled.y.max(0.0).min(100.0) as u8, /// z: scaled.z.max(0.0).min(100.0) as u8, /// } /// } /// } /// /// fn main() { /// // Start with an sRGB color and convert it from u8 to f32, /// // which is the default component type. /// let rgb = Srgb::new(196u8, 238, 155).into_format(); /// /// // Convert the rgb color to our own format. /// let xyz = Xyz100::from(rgb); /// /// assert_eq!( /// xyz, /// Xyz100 { /// x: 59, /// y: 75, /// z: 42, /// } /// ); /// } /// ``` /// /// With generic components: /// /// ```rust /// #[macro_use] /// extern crate palette; /// extern crate num_traits; /// #[macro_use] /// extern crate approx; /// /// use palette::{Component, FromColor, Hsv, Pixel, Srgb}; /// use palette::rgb::{Rgb, RgbSpace}; /// use palette::encoding::Linear; /// use palette::white_point::D65; /// use num_traits::Float; /// /// /// sRGB, but with a reversed memory layout. /// #[derive(PartialEq, Debug, FromColor, Pixel)] /// #[palette_manual_from(Rgb = "from_rgb_internal")] /// #[palette_component = "T"] /// #[repr(C)] // Makes sure the memory layout is as we want it. /// struct Bgr<T> { /// blue: T, /// green: T, /// red: T, /// } /// /// // Rgb is a bit more complex than other colors, so we are /// // implementing a private conversion function and letting it /// // derive `From` automatically. It will take a round trip /// // through linear format, but that's fine in this case. /// impl<T: Component + Float> Bgr<T> { /// // It converts from any linear Rgb type that has the D65 /// // white point, which is the default if we don't specify /// // anything else with the `palette_white_point` attribute. /// fn from_rgb_internal<S>(color: Rgb<Linear<S>, T>) -> Self /// where /// S: RgbSpace<WhitePoint = D65>, /// { /// let srgb = Srgb::from_rgb(color); /// /// Bgr { /// blue: srgb.blue, /// green: srgb.green, /// red: srgb.red, /// } /// } /// } /// /// fn main() { /// let mut buffer = vec![0.0f64, 0.0, 0.0, 0.0, 0.0, 0.0]; /// { /// let bgr_buffer = Bgr::from_raw_slice_mut(&mut buffer); /// bgr_buffer[1] = Hsv::new(90.0, 1.0, 0.5).into(); /// } /// /// assert_relative_eq!(buffer[3], 0.0); /// assert_relative_eq!(buffer[4], 0.7353569830524495); /// assert_relative_eq!(buffer[5], 0.5370987304831942); /// } /// ``` /// /// With alpha component: /// /// ```rust /// #[macro_use] /// extern crate palette; /// /// use palette::{FromColor, LinSrgba, Srgb}; /// use palette::rgb::{Rgb, RgbSpace}; /// use palette::encoding::Linear; /// use palette::white_point::D65; /// /// /// CSS style sRGB. /// #[derive(PartialEq, Debug, FromColor)] /// #[palette_manual_from(Rgb = "from_rgb_internal")] /// struct CssRgb { /// red: u8, /// green: u8, /// blue: u8, /// #[palette_alpha] /// alpha: f32, /// } /// /// // We will write a conversion function for opaque RGB and derive /// // will take care of preserving the transparency for us. /// impl CssRgb { /// fn from_rgb_internal<S>(color: Rgb<Linear<S>, f32>) -> Self /// where /// S: RgbSpace<WhitePoint = D65>, /// { /// // Convert to u8 sRGB /// let srgb = Srgb::from_rgb(color).into_format(); /// /// CssRgb { /// red: srgb.red, /// green: srgb.green, /// blue: srgb.blue, /// alpha: 1.0, /// } /// } /// } /// /// fn main() { /// let color = LinSrgba::new(0.5, 0.0, 1.0, 0.3); /// let css_color = CssRgb::from(color); /// /// assert_eq!( /// css_color, /// CssRgb { /// red: 187, /// green: 0, /// blue: 254, /// alpha: 0.3, /// } /// ); /// } /// ``` pub trait FromColor<Wp = D65, T = f32>: Sized where T: Component + Float, Wp: WhitePoint, { ///Convert from XYZ color space fn from_xyz(Xyz<Wp, T>) -> Self; ///Convert from Yxy color space fn from_yxy(inp: Yxy<Wp, T>) -> Self { Self::from_xyz(inp.into_xyz()) } ///Convert from L\*a\*b\* color space fn from_lab(inp: Lab<Wp, T>) -> Self { Self::from_xyz(inp.into_xyz()) } ///Convert from L\*C\*h° color space fn from_lch(inp: Lch<Wp, T>) -> Self { Self::from_lab(inp.into_lab()) } ///Convert from RGB color space fn from_rgb<S: RgbSpace<WhitePoint = Wp>>(inp: Rgb<Linear<S>, T>) -> Self { Self::from_xyz(inp.into_xyz()) } ///Convert from HSL color space fn from_hsl<S: RgbSpace<WhitePoint = Wp>>(inp: Hsl<S, T>) -> Self { Self::from_rgb(Rgb::<Linear<S>, T>::from_hsl(inp)) } ///Convert from HSV color space fn from_hsv<S: RgbSpace<WhitePoint = Wp>>(inp: Hsv<S, T>) -> Self { Self::from_rgb(Rgb::<Linear<S>, T>::from_hsv(inp)) } ///Convert from HWB color space fn from_hwb<S: RgbSpace<WhitePoint = Wp>>(inp: Hwb<S, T>) -> Self { Self::from_hsv(Hsv::<S, T>::from_hwb(inp)) } ///Convert from Luma fn from_luma(inp: Luma<Linear<Wp>, T>) -> Self { Self::from_xyz(inp.into_xyz()) } } /// IntoColor provides conversion to the colors. /// /// It requires into_xyz, when implemented manually, and derives conversion to other colors as a /// default from this. These defaults must be overridden when direct conversion exists between /// colors. /// /// # Deriving /// /// `IntoColor` can be derived in a mostly automatic way. The strength of deriving it is that it /// will also derive `Into` implementations for all of the `palette` color types. The minimum /// requirement is to implement `Into<Xyz>`, but it can also be customized to make use of generics /// and have other manual implementations. /// /// ## Item Attributes /// /// * `#[palette_manual_into(Luma, Rgb = "into_rgb_internal")]`: Specifies the color types that /// the the custom color type already has `Into` implementations for. Adding `= "function_name"` /// tells it to use that function instead of an `Into` implementation. The default, when omitted, /// is to require `Into<Xyz>` to be implemented. /// /// * `#[palette_white_point = "some::white_point::Type"]`: Sets the white point type that should /// be used when deriving. The default is `D65`, but it may be any other type, including /// type parameters. /// /// * `#[palette_component = "some::component::Type"]`: Sets the color component type that should /// be used when deriving. The default is `f32`, but it may be any other type, including /// type parameters. /// /// * `#[palette_rgb_space = "some::rgb_space::Type"]`: Sets the RGB space type that should /// be used when deriving. The default is to either use `Srgb` or a best effort to convert between /// spaces, so sometimes it has to be set to a specific type. This does also accept type parameters. /// /// ## Field Attributes /// /// * `#[palette_alpha]`: Specifies that the field is the color's transparency value. /// /// ## Examples /// /// Minimum requirements implementation: /// /// ```rust /// #[macro_use] /// extern crate palette; /// /// use palette::{Srgb, Xyz}; /// /// /// A custom version of Xyz that stores integer values from 0 to 100. /// #[derive(PartialEq, Debug, IntoColor)] /// struct Xyz100 { /// x: u8, /// y: u8, /// z: u8, /// } /// /// // We have to at least implement conversion into Xyz if we don't /// // specify anything else, using the `palette_manual_into` attribute. /// impl Into<Xyz> for Xyz100 { /// fn into(self) -> Xyz { /// Xyz::new( /// self.x as f32 / 100.0, /// self.y as f32 / 100.0, /// self.z as f32 / 100.0, /// ) /// } /// } /// /// fn main() { /// // Start with an Xyz100 color. /// let xyz = Xyz100 { /// x: 59, /// y: 75, /// z: 42, /// }; /// /// // Convert the color to sRGB. /// let rgb: Srgb = xyz.into(); /// /// assert_eq!(rgb.into_format(), Srgb::new(195u8, 237, 154)); /// } /// ``` /// /// With generic components: /// /// ```rust /// #[macro_use] /// extern crate palette; /// extern crate num_traits; /// #[macro_use] /// extern crate approx; /// /// use palette::{Component, Hsv, IntoColor, Pixel, Srgb}; /// use palette::rgb::{Rgb, RgbSpace}; /// use palette::encoding::Linear; /// use palette::white_point::D65; /// use num_traits::Float; /// /// /// sRGB, but with a reversed memory layout. /// #[derive(Copy, Clone, IntoColor, Pixel)] /// #[palette_manual_into(Rgb = "into_rgb_internal")] /// #[palette_component = "T"] /// #[repr(C)] // Makes sure the memory layout is as we want it. /// struct Bgr<T> { /// blue: T, /// green: T, /// red: T, /// } /// /// // Rgb is a bit more complex than other colors, so we are /// // implementing a private conversion function and letting it /// // derive `Into` automatically. /// impl<T: Component + Float> Bgr<T> { /// // It converts from any linear Rgb type that has the D65 /// // white point, which is the default if we don't specify /// // anything else with the `palette_white_point` attribute. /// fn into_rgb_internal<S>(self) -> Rgb<Linear<S>, T> /// where /// S: RgbSpace<WhitePoint = D65>, /// { /// Srgb::new(self.red, self.green, self.blue).into_rgb() /// } /// } /// /// fn main() { /// let buffer = vec![ /// 0.0f64, /// 0.0, /// 0.0, /// 0.0, /// 0.7353569830524495, /// 0.5370987304831942, /// ]; /// let hsv = Bgr::from_raw_slice(&buffer)[1].into(); /// /// assert_relative_eq!(hsv, Hsv::new(90.0, 1.0, 0.5)); /// } /// ``` /// /// With alpha component: /// /// ```rust /// #[macro_use] /// extern crate palette; /// #[macro_use] /// extern crate approx; /// /// use palette::{IntoColor, LinSrgba, Srgb}; /// use palette::rgb::{Rgb, RgbSpace}; /// use palette::encoding::Linear; /// use palette::white_point::D65; /// /// /// CSS style sRGB. /// #[derive(PartialEq, Debug, IntoColor)] /// #[palette_manual_into(Rgb = "into_rgb_internal")] /// struct CssRgb { /// red: u8, /// green: u8, /// blue: u8, /// #[palette_alpha] /// alpha: f32, /// } /// /// // We will write a conversion function for opaque RGB and derive /// // will take care of preserving the transparency for us. /// impl CssRgb { /// fn into_rgb_internal<S>(self) -> Rgb<Linear<S>, f32> /// where /// S: RgbSpace<WhitePoint = D65>, /// { /// Srgb::new(self.red, self.green, self.blue) /// .into_format() /// .into_rgb() /// } /// } /// /// fn main() { /// let css_color = CssRgb { /// red: 187, /// green: 0, /// blue: 255, /// alpha: 0.3, /// }; /// let color = css_color.into(); /// /// assert_relative_eq!(color, LinSrgba::new(0.496933, 0.0, 1.0, 0.3)); /// } /// ``` pub trait IntoColor<Wp = D65, T = f32>: Sized where T: Component + Float, Wp: WhitePoint, { ///Convert into XYZ space fn into_xyz(self) -> Xyz<Wp, T>; ///Convert into Yxy color space fn into_yxy(self) -> Yxy<Wp, T> { Yxy::from_xyz(self.into_xyz()) } ///Convert into L\*a\*b\* color space fn into_lab(self) -> Lab<Wp, T> { Lab::from_xyz(self.into_xyz()) } ///Convert into L\*C\*h° color space fn into_lch(self) -> Lch<Wp, T> { Lch::from_lab(self.into_lab()) } ///Convert into RGB color space. fn into_rgb<S: RgbSpace<WhitePoint = Wp>>(self) -> Rgb<Linear<S>, T> { Rgb::from_xyz(self.into_xyz()) } ///Convert into HSL color space fn into_hsl<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsl<S, T> { let rgb: Rgb<Linear<S>, T> = self.into_rgb(); Hsl::from_rgb(rgb) } ///Convert into HSV color space fn into_hsv<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsv<S, T> { let rgb: Rgb<Linear<S>, T> = self.into_rgb(); Hsv::from_rgb(rgb) } ///Convert into HWB color space fn into_hwb<S: RgbSpace<WhitePoint = Wp>>(self) -> Hwb<S, T> { let hsv: Hsv<S, T> = self.into_hsv(); Hwb::from_hsv(hsv) } ///Convert into Luma fn into_luma(self) -> Luma<Linear<Wp>, T> { Luma::from_xyz(self.into_xyz()) } } macro_rules! impl_into_color { ($self_ty: ident, $from_fn: ident) => { impl<Wp, T> IntoColor<Wp, T> for $self_ty<Wp, T> where T: Component + Float, Wp: WhitePoint, { fn into_xyz(self) -> Xyz<Wp, T> { Xyz::$from_fn(self) } fn into_yxy(self) -> Yxy<Wp, T> { Yxy::$from_fn(self) } fn into_lab(self) -> Lab<Wp, T> { Lab::$from_fn(self) } fn into_lch(self) -> Lch<Wp, T> { Lch::$from_fn(self) } fn into_rgb<S: RgbSpace<WhitePoint = Wp>>(self) -> Rgb<Linear<S>, T> { Rgb::$from_fn(self) } fn into_hsl<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsl<S, T> { Hsl::$from_fn(self) } fn into_hsv<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsv<S, T> { Hsv::$from_fn(self) } fn into_luma(self) -> Luma<Linear<Wp>, T> { Luma::$from_fn(self) } } }; } macro_rules! impl_into_color_rgb { ($self_ty: ident, $from_fn: ident) => { impl<S, Wp, T> IntoColor<Wp, T> for $self_ty<S, T> where T: Component + Float, Wp: WhitePoint, S: RgbSpace<WhitePoint = Wp>, { fn into_xyz(self) -> Xyz<Wp, T> { Xyz::$from_fn(self) } fn into_yxy(self) -> Yxy<Wp, T> { Yxy::$from_fn(self) } fn into_lab(self) -> Lab<Wp, T> { Lab::$from_fn(self) } fn into_lch(self) -> Lch<Wp, T> { Lch::$from_fn(self) } fn into_rgb<Sp: RgbSpace<WhitePoint = Wp>>(self) -> Rgb<Linear<Sp>, T> { Rgb::$from_fn(self) } fn into_hsl<Sp: RgbSpace<WhitePoint = Wp>>(self) -> Hsl<Sp, T> { Hsl::$from_fn(self) } fn into_hsv<Sp: RgbSpace<WhitePoint = Wp>>(self) -> Hsv<Sp, T> { Hsv::$from_fn(self) } fn into_luma(self) -> Luma<Linear<Wp>, T> { Luma::$from_fn(self) } } }; } impl_into_color!(Xyz, from_xyz); impl_into_color!(Yxy, from_yxy); impl_into_color!(Lab, from_lab); impl_into_color!(Lch, from_lch); impl_into_color_rgb!(Hsl, from_hsl); impl_into_color_rgb!(Hsv, from_hsv); impl_into_color_rgb!(Hwb, from_hwb); #[cfg(test)] mod tests { use std::marker::PhantomData; use num_traits::Float; use Component; use Linear; use rgb::{Rgb, RgbSpace}; use luma::Luma; use {Color, Hsl, Hsv, Hwb, Lab, Lch, Xyz, Yxy}; #[derive(Copy, Clone, FromColor, IntoColor)] #[palette_manual_from(Xyz, Luma = "from_luma_internal")] #[palette_manual_into(Xyz, Luma = "into_luma_internal")] #[palette_white_point = "S::WhitePoint"] #[palette_component = "f64"] #[palette_rgb_space = "S"] #[palette_internal] struct WithXyz<S: RgbSpace>(PhantomData<S>); impl<S: RgbSpace> WithXyz<S> { fn from_luma_internal(_color: Luma<Linear<S::WhitePoint>, f64>) -> Self { WithXyz(PhantomData) } fn into_luma_internal(self) -> Luma<Linear<S::WhitePoint>, f64> { Luma::new(1.0) } } impl<S: RgbSpace> From<Xyz<S::WhitePoint, f64>> for WithXyz<S> { fn from(_color: Xyz<S::WhitePoint, f64>) -> Self { WithXyz(PhantomData) } } impl<S: RgbSpace> Into<Xyz<S::WhitePoint, f64>> for WithXyz<S> { fn into(self) -> Xyz<S::WhitePoint, f64> { Xyz::with_wp(0.0, 1.0, 0.0) } } #[derive(Copy, Clone, FromColor, IntoColor)] #[palette_manual_from(Lch, Luma = "from_luma_internal")] #[palette_manual_into(Lch, Luma = "into_luma_internal")] #[palette_white_point = "::white_point::E"] #[palette_component = "T"] #[palette_rgb_space = "(::encoding::Srgb, ::white_point::E)"] #[palette_internal] struct WithoutXyz<T: Component + Float>(PhantomData<T>); impl<T: Component + Float> WithoutXyz<T> { fn from_luma_internal(_color: Luma<Linear<::white_point::E>, T>) -> Self { WithoutXyz(PhantomData) } fn into_luma_internal(self) -> Luma<Linear<::white_point::E>, T> { Luma::new(T::one()) } } impl<T: Component + Float> From<Lch<::white_point::E, T>> for WithoutXyz<T> { fn from(_color: Lch<::white_point::E, T>) -> Self { WithoutXyz(PhantomData) } } impl<T: Component + Float> Into<Lch<::white_point::E, T>> for WithoutXyz<T> { fn into(self) -> Lch<::white_point::E, T> { Lch::with_wp(T::one(), T::zero(), T::zero()) } } #[test] fn from_with_xyz() { let xyz: Xyz<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(xyz); let yxy: Yxy<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(yxy); let lab: Lab<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(lab); let lch: Lch<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(lch); let rgb: Rgb<::encoding::Srgb, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(rgb); let hsl: Hsl<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(hsl); let hsv: Hsv<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(hsv); let hwb: Hwb<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(hwb); let luma: Luma<::encoding::Srgb, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(luma); let color: Color<_, f64> = Default::default(); WithXyz::<::encoding::Srgb>::from(color); } #[test] fn into_with_xyz() { let color = WithXyz::<::encoding::Srgb>(PhantomData); let _xyz: Xyz<_, f64> = color.into(); let _yxy: Yxy<_, f64> = color.into(); let _lab: Lab<_, f64> = color.into(); let _lch: Lch<_, f64> = color.into(); let _rgb: Rgb<::encoding::Srgb, f64> = color.into(); let _hsl: Hsl<_, f64> = color.into(); let _hsv: Hsv<_, f64> = color.into(); let _hwb: Hwb<_, f64> = color.into(); let _luma: Luma<::encoding::Srgb, f64> = color.into(); let _color: Color<::encoding::Srgb, f64> = color.into(); } #[test] fn from_without_xyz() { let xyz: Xyz<::white_point::E, f64> = Default::default(); WithoutXyz::<f64>::from(xyz); let yxy: Yxy<::white_point::E, f64> = Default::default(); WithoutXyz::<f64>::from(yxy); let lab: Lab<::white_point::E, f64> = Default::default(); WithoutXyz::<f64>::from(lab); let lch: Lch<::white_point::E, f64> = Default::default(); WithoutXyz::<f64>::from(lch); let rgb: Rgb<(_, ::encoding::Srgb), f64> = Default::default(); WithoutXyz::<f64>::from(rgb); let hsl: Hsl<_, f64> = Default::default(); WithoutXyz::<f64>::from(hsl); let hsv: Hsv<_, f64> = Default::default(); WithoutXyz::<f64>::from(hsv); let hwb: Hwb<_, f64> = Default::default(); WithoutXyz::<f64>::from(hwb); let luma: Luma<Linear<::white_point::E>, f64> = Default::default(); WithoutXyz::<f64>::from(luma); let color: Color<_, f64> = Default::default(); WithoutXyz::<f64>::from(color); } #[test] fn into_without_xyz() { let color = WithoutXyz::<f64>(PhantomData); let _xyz: Xyz<::white_point::E, f64> = color.into(); let _yxy: Yxy<::white_point::E, f64> = color.into(); let _lab: Lab<::white_point::E, f64> = color.into(); let _lch: Lch<::white_point::E, f64> = color.into(); let _rgb: Rgb<(_, ::encoding::Srgb), f64> = color.into(); let _hsl: Hsl<_, f64> = color.into(); let _hsv: Hsv<_, f64> = color.into(); let _hwb: Hwb<_, f64> = color.into(); let _luma: Luma<Linear<::white_point::E>, f64> = color.into(); let _color: Color<_, f64> = color.into(); } }