1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
use num_traits::Float;

use {Component, Hsl, Hsv, Hwb, Lab, Lch, Xyz, Yxy};
use white_point::{D65, WhitePoint};
use rgb::{Rgb, RgbSpace};
use luma::Luma;
use encoding::Linear;

/// FromColor provides conversion from the colors.
///
/// It requires from_xyz, when implemented manually, and derives conversion to other colors as a
/// default from this. These defaults must be overridden when direct conversion exists between
/// colors. For example, Luma has direct conversion to LinRgb. So from_rgb conversion for Luma and
/// from_luma for LinRgb is implemented directly. The from for the same color must override
/// the default. For example, from_rgb for LinRgb will convert via Xyz which needs to be overridden
/// with self to avoid the unnecessary conversion.
///
/// # Deriving
///
/// `FromColor` can be derived in a mostly automatic way. The strength of deriving it is that it
/// will also derive `From` implementations for all of the `palette` color types. The minimum
/// requirement is to implement `From<Xyz>`, but it can also be customized to make use of generics
/// and have other manual implementations.
///
/// ## Item Attributes
///
///  * `#[palette_manual_from(Luma, Rgb = "from_rgb_internal")]`: Specifies the color types that
/// the the custom color type already has `From` implementations for. Adding `= "function_name"`
/// tells it to use that function instead of a `From` implementation. The default, when omitted,
/// is to require `From<Xyz>` to be implemented.
///
///  * `#[palette_white_point = "some::white_point::Type"]`: Sets the white point type that should
/// be used when deriving. The default is `D65`, but it may be any other type, including
/// type parameters.
///
///  * `#[palette_component = "some::component::Type"]`: Sets the color component type that should
/// be used when deriving. The default is `f32`, but it may be any other type, including
/// type parameters.
///
///  * `#[palette_rgb_space = "some::rgb_space::Type"]`: Sets the RGB space type that should
/// be used when deriving. The default is to either use `Srgb` or a best effort to convert between
/// spaces, so sometimes it has to be set to a specific type. This does also accept type parameters.
///
/// ## Field Attributes
///
///  * `#[palette_alpha]`: Specifies that the field is the color's transparency value.
///
/// ## Examples
///
/// Minimum requirements implementation:
///
/// ```rust
/// #[macro_use]
/// extern crate palette;
///
/// use palette::{Srgb, Xyz};
///
/// /// A custom version of Xyz that stores integer values from 0 to 100.
/// #[derive(PartialEq, Debug, FromColor)]
/// struct Xyz100 {
///     x: u8,
///     y: u8,
///     z: u8,
/// }
///
/// // We have to at least implement conversion from Xyz if we don't
/// // specify anything else, using the `palette_manual_from` attribute.
/// impl From<Xyz> for Xyz100 {
///     fn from(color: Xyz) -> Self {
///         let scaled = color * 100.0;
///         Xyz100 {
///             x: scaled.x.max(0.0).min(100.0) as u8,
///             y: scaled.y.max(0.0).min(100.0) as u8,
///             z: scaled.z.max(0.0).min(100.0) as u8,
///         }
///     }
/// }
///
/// fn main() {
///     // Start with an sRGB color and convert it from u8 to f32,
///     // which is the default component type.
///     let rgb = Srgb::new(196u8, 238, 155).into_format();
///
///     // Convert the rgb color to our own format.
///     let xyz = Xyz100::from(rgb);
///
///     assert_eq!(
///         xyz,
///         Xyz100 {
///             x: 59,
///             y: 75,
///             z: 42,
///         }
///     );
/// }
/// ```
///
/// With generic components:
///
/// ```rust
/// #[macro_use]
/// extern crate palette;
/// extern crate num_traits;
/// #[macro_use]
/// extern crate approx;
///
/// use palette::{Component, FromColor, Hsv, Pixel, Srgb};
/// use palette::rgb::{Rgb, RgbSpace};
/// use palette::encoding::Linear;
/// use palette::white_point::D65;
/// use num_traits::Float;
///
/// /// sRGB, but with a reversed memory layout.
/// #[derive(PartialEq, Debug, FromColor, Pixel)]
/// #[palette_manual_from(Rgb = "from_rgb_internal")]
/// #[palette_component = "T"]
/// #[repr(C)] // Makes sure the memory layout is as we want it.
/// struct Bgr<T> {
///     blue: T,
///     green: T,
///     red: T,
/// }
///
/// // Rgb is a bit more complex than other colors, so we are
/// // implementing a private conversion function and letting it
/// // derive `From` automatically. It will take a round trip
/// // through linear format, but that's fine in this case.
/// impl<T: Component + Float> Bgr<T> {
///     // It converts from any linear Rgb type that has the D65
///     // white point, which is the default if we don't specify
///     // anything else with the `palette_white_point` attribute.
///     fn from_rgb_internal<S>(color: Rgb<Linear<S>, T>) -> Self
///     where
///         S: RgbSpace<WhitePoint = D65>,
///     {
///         let srgb = Srgb::from_rgb(color);
///
///         Bgr {
///             blue: srgb.blue,
///             green: srgb.green,
///             red: srgb.red,
///         }
///     }
/// }
///
/// fn main() {
///     let mut buffer = vec![0.0f64, 0.0, 0.0, 0.0, 0.0, 0.0];
///     {
///         let bgr_buffer = Bgr::from_raw_slice_mut(&mut buffer);
///         bgr_buffer[1] = Hsv::new(90.0, 1.0, 0.5).into();
///     }
///
///     assert_relative_eq!(buffer[3], 0.0);
///     assert_relative_eq!(buffer[4], 0.7353569830524495);
///     assert_relative_eq!(buffer[5], 0.5370987304831942);
/// }
/// ```
///
/// With alpha component:
///
/// ```rust
/// #[macro_use]
/// extern crate palette;
///
/// use palette::{FromColor, LinSrgba, Srgb};
/// use palette::rgb::{Rgb, RgbSpace};
/// use palette::encoding::Linear;
/// use palette::white_point::D65;
///
/// /// CSS style sRGB.
/// #[derive(PartialEq, Debug, FromColor)]
/// #[palette_manual_from(Rgb = "from_rgb_internal")]
/// struct CssRgb {
///     red: u8,
///     green: u8,
///     blue: u8,
///     #[palette_alpha]
///     alpha: f32,
/// }
///
/// // We will write a conversion function for opaque RGB and derive
/// // will take care of preserving the transparency for us.
/// impl CssRgb {
///     fn from_rgb_internal<S>(color: Rgb<Linear<S>, f32>) -> Self
///     where
///         S: RgbSpace<WhitePoint = D65>,
///     {
///         // Convert to u8 sRGB
///         let srgb = Srgb::from_rgb(color).into_format();
///
///         CssRgb {
///             red: srgb.red,
///             green: srgb.green,
///             blue: srgb.blue,
///             alpha: 1.0,
///         }
///     }
/// }
///
/// fn main() {
///     let color = LinSrgba::new(0.5, 0.0, 1.0, 0.3);
///     let css_color = CssRgb::from(color);
///
///     assert_eq!(
///         css_color,
///         CssRgb {
///             red: 187,
///             green: 0,
///             blue: 254,
///             alpha: 0.3,
///         }
///     );
/// }
/// ```
pub trait FromColor<Wp = D65, T = f32>: Sized
where
    T: Component + Float,
    Wp: WhitePoint,
{
    ///Convert from XYZ color space
    fn from_xyz(Xyz<Wp, T>) -> Self;

    ///Convert from Yxy color space
    fn from_yxy(inp: Yxy<Wp, T>) -> Self {
        Self::from_xyz(inp.into_xyz())
    }

    ///Convert from L\*a\*b\* color space
    fn from_lab(inp: Lab<Wp, T>) -> Self {
        Self::from_xyz(inp.into_xyz())
    }

    ///Convert from L\*C\*h° color space
    fn from_lch(inp: Lch<Wp, T>) -> Self {
        Self::from_lab(inp.into_lab())
    }

    ///Convert from RGB color space
    fn from_rgb<S: RgbSpace<WhitePoint = Wp>>(inp: Rgb<Linear<S>, T>) -> Self {
        Self::from_xyz(inp.into_xyz())
    }

    ///Convert from HSL color space
    fn from_hsl<S: RgbSpace<WhitePoint = Wp>>(inp: Hsl<S, T>) -> Self {
        Self::from_rgb(Rgb::<Linear<S>, T>::from_hsl(inp))
    }

    ///Convert from HSV color space
    fn from_hsv<S: RgbSpace<WhitePoint = Wp>>(inp: Hsv<S, T>) -> Self {
        Self::from_rgb(Rgb::<Linear<S>, T>::from_hsv(inp))
    }

    ///Convert from HWB color space
    fn from_hwb<S: RgbSpace<WhitePoint = Wp>>(inp: Hwb<S, T>) -> Self {
        Self::from_hsv(Hsv::<S, T>::from_hwb(inp))
    }

    ///Convert from Luma
    fn from_luma(inp: Luma<Linear<Wp>, T>) -> Self {
        Self::from_xyz(inp.into_xyz())
    }
}

/// IntoColor provides conversion to the colors.
///
/// It requires into_xyz, when implemented manually, and derives conversion to other colors as a
/// default from this. These defaults must be overridden when direct conversion exists between
/// colors.
///
/// # Deriving
///
/// `IntoColor` can be derived in a mostly automatic way. The strength of deriving it is that it
/// will also derive `Into` implementations for all of the `palette` color types. The minimum
/// requirement is to implement `Into<Xyz>`, but it can also be customized to make use of generics
/// and have other manual implementations.
///
/// ## Item Attributes
///
///  * `#[palette_manual_into(Luma, Rgb = "into_rgb_internal")]`: Specifies the color types that
/// the the custom color type already has `Into` implementations for. Adding `= "function_name"`
/// tells it to use that function instead of an `Into` implementation. The default, when omitted,
/// is to require `Into<Xyz>` to be implemented.
///
///  * `#[palette_white_point = "some::white_point::Type"]`: Sets the white point type that should
/// be used when deriving. The default is `D65`, but it may be any other type, including
/// type parameters.
///
///  * `#[palette_component = "some::component::Type"]`: Sets the color component type that should
/// be used when deriving. The default is `f32`, but it may be any other type, including
/// type parameters.
///
///  * `#[palette_rgb_space = "some::rgb_space::Type"]`: Sets the RGB space type that should
/// be used when deriving. The default is to either use `Srgb` or a best effort to convert between
/// spaces, so sometimes it has to be set to a specific type. This does also accept type parameters.
///
/// ## Field Attributes
///
///  * `#[palette_alpha]`: Specifies that the field is the color's transparency value.
///
/// ## Examples
///
/// Minimum requirements implementation:
///
/// ```rust
/// #[macro_use]
/// extern crate palette;
///
/// use palette::{Srgb, Xyz};
///
/// /// A custom version of Xyz that stores integer values from 0 to 100.
/// #[derive(PartialEq, Debug, IntoColor)]
/// struct Xyz100 {
///     x: u8,
///     y: u8,
///     z: u8,
/// }
///
/// // We have to at least implement conversion into Xyz if we don't
/// // specify anything else, using the `palette_manual_into` attribute.
/// impl Into<Xyz> for Xyz100 {
///     fn into(self) -> Xyz {
///         Xyz::new(
///             self.x as f32 / 100.0,
///             self.y as f32 / 100.0,
///             self.z as f32 / 100.0,
///         )
///     }
/// }
///
/// fn main() {
///     // Start with an Xyz100 color.
///     let xyz = Xyz100 {
///         x: 59,
///         y: 75,
///         z: 42,
///     };
///
///     // Convert the color to sRGB.
///     let rgb: Srgb = xyz.into();
///
///     assert_eq!(rgb.into_format(), Srgb::new(195u8, 237, 154));
/// }
/// ```
///
/// With generic components:
///
/// ```rust
/// #[macro_use]
/// extern crate palette;
/// extern crate num_traits;
/// #[macro_use]
/// extern crate approx;
///
/// use palette::{Component, Hsv, IntoColor, Pixel, Srgb};
/// use palette::rgb::{Rgb, RgbSpace};
/// use palette::encoding::Linear;
/// use palette::white_point::D65;
/// use num_traits::Float;
///
/// /// sRGB, but with a reversed memory layout.
/// #[derive(Copy, Clone, IntoColor, Pixel)]
/// #[palette_manual_into(Rgb = "into_rgb_internal")]
/// #[palette_component = "T"]
/// #[repr(C)] // Makes sure the memory layout is as we want it.
/// struct Bgr<T> {
///     blue: T,
///     green: T,
///     red: T,
/// }
///
/// // Rgb is a bit more complex than other colors, so we are
/// // implementing a private conversion function and letting it
/// // derive `Into` automatically.
/// impl<T: Component + Float> Bgr<T> {
///     // It converts from any linear Rgb type that has the D65
///     // white point, which is the default if we don't specify
///     // anything else with the `palette_white_point` attribute.
///     fn into_rgb_internal<S>(self) -> Rgb<Linear<S>, T>
///     where
///         S: RgbSpace<WhitePoint = D65>,
///     {
///         Srgb::new(self.red, self.green, self.blue).into_rgb()
///     }
/// }
///
/// fn main() {
///     let buffer = vec![
///         0.0f64,
///         0.0,
///         0.0,
///         0.0,
///         0.7353569830524495,
///         0.5370987304831942,
///     ];
///     let hsv = Bgr::from_raw_slice(&buffer)[1].into();
///
///     assert_relative_eq!(hsv, Hsv::new(90.0, 1.0, 0.5));
/// }
/// ```
///
/// With alpha component:
///
/// ```rust
/// #[macro_use]
/// extern crate palette;
/// #[macro_use]
/// extern crate approx;
///
/// use palette::{IntoColor, LinSrgba, Srgb};
/// use palette::rgb::{Rgb, RgbSpace};
/// use palette::encoding::Linear;
/// use palette::white_point::D65;
///
/// /// CSS style sRGB.
/// #[derive(PartialEq, Debug, IntoColor)]
/// #[palette_manual_into(Rgb = "into_rgb_internal")]
/// struct CssRgb {
///     red: u8,
///     green: u8,
///     blue: u8,
///     #[palette_alpha]
///     alpha: f32,
/// }
///
/// // We will write a conversion function for opaque RGB and derive
/// // will take care of preserving the transparency for us.
/// impl CssRgb {
///     fn into_rgb_internal<S>(self) -> Rgb<Linear<S>, f32>
///     where
///         S: RgbSpace<WhitePoint = D65>,
///     {
///         Srgb::new(self.red, self.green, self.blue)
///             .into_format()
///             .into_rgb()
///     }
/// }
///
/// fn main() {
///     let css_color = CssRgb {
///         red: 187,
///         green: 0,
///         blue: 255,
///         alpha: 0.3,
///     };
///     let color = css_color.into();
///
///     assert_relative_eq!(color, LinSrgba::new(0.496933, 0.0, 1.0, 0.3));
/// }
/// ```
pub trait IntoColor<Wp = D65, T = f32>: Sized
where
    T: Component + Float,
    Wp: WhitePoint,
{
    ///Convert into XYZ space
    fn into_xyz(self) -> Xyz<Wp, T>;

    ///Convert into Yxy color space
    fn into_yxy(self) -> Yxy<Wp, T> {
        Yxy::from_xyz(self.into_xyz())
    }

    ///Convert into L\*a\*b\* color space
    fn into_lab(self) -> Lab<Wp, T> {
        Lab::from_xyz(self.into_xyz())
    }

    ///Convert into L\*C\*h° color space
    fn into_lch(self) -> Lch<Wp, T> {
        Lch::from_lab(self.into_lab())
    }

    ///Convert into RGB color space.
    fn into_rgb<S: RgbSpace<WhitePoint = Wp>>(self) -> Rgb<Linear<S>, T> {
        Rgb::from_xyz(self.into_xyz())
    }

    ///Convert into HSL color space
    fn into_hsl<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsl<S, T> {
        let rgb: Rgb<Linear<S>, T> = self.into_rgb();
        Hsl::from_rgb(rgb)
    }

    ///Convert into HSV color space
    fn into_hsv<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsv<S, T> {
        let rgb: Rgb<Linear<S>, T> = self.into_rgb();
        Hsv::from_rgb(rgb)
    }

    ///Convert into HWB color space
    fn into_hwb<S: RgbSpace<WhitePoint = Wp>>(self) -> Hwb<S, T> {
        let hsv: Hsv<S, T> = self.into_hsv();
        Hwb::from_hsv(hsv)
    }

    ///Convert into Luma
    fn into_luma(self) -> Luma<Linear<Wp>, T> {
        Luma::from_xyz(self.into_xyz())
    }
}

macro_rules! impl_into_color {
    ($self_ty: ident, $from_fn: ident) => {
        impl<Wp, T> IntoColor<Wp, T> for $self_ty<Wp, T>
        where
            T: Component + Float,
            Wp: WhitePoint,
        {
            fn into_xyz(self) -> Xyz<Wp, T> {
                Xyz::$from_fn(self)
            }

            fn into_yxy(self) -> Yxy<Wp, T> {
                Yxy::$from_fn(self)
            }

            fn into_lab(self) -> Lab<Wp, T> {
                Lab::$from_fn(self)
            }

            fn into_lch(self) -> Lch<Wp, T> {
                Lch::$from_fn(self)
            }

            fn into_rgb<S: RgbSpace<WhitePoint = Wp>>(self) -> Rgb<Linear<S>, T> {
                Rgb::$from_fn(self)
            }

            fn into_hsl<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsl<S, T> {
                Hsl::$from_fn(self)
            }

            fn into_hsv<S: RgbSpace<WhitePoint = Wp>>(self) -> Hsv<S, T> {
                Hsv::$from_fn(self)
            }

            fn into_luma(self) -> Luma<Linear<Wp>, T> {
                Luma::$from_fn(self)
            }
        }
    };
}

macro_rules! impl_into_color_rgb {
    ($self_ty: ident, $from_fn: ident) => {
        impl<S, Wp, T> IntoColor<Wp, T> for $self_ty<S, T>
        where
            T: Component + Float,
            Wp: WhitePoint,
            S: RgbSpace<WhitePoint = Wp>,
        {
            fn into_xyz(self) -> Xyz<Wp, T> {
                Xyz::$from_fn(self)
            }

            fn into_yxy(self) -> Yxy<Wp, T> {
                Yxy::$from_fn(self)
            }

            fn into_lab(self) -> Lab<Wp, T> {
                Lab::$from_fn(self)
            }

            fn into_lch(self) -> Lch<Wp, T> {
                Lch::$from_fn(self)
            }

            fn into_rgb<Sp: RgbSpace<WhitePoint = Wp>>(self) -> Rgb<Linear<Sp>, T> {
                Rgb::$from_fn(self)
            }

            fn into_hsl<Sp: RgbSpace<WhitePoint = Wp>>(self) -> Hsl<Sp, T> {
                Hsl::$from_fn(self)
            }

            fn into_hsv<Sp: RgbSpace<WhitePoint = Wp>>(self) -> Hsv<Sp, T> {
                Hsv::$from_fn(self)
            }

            fn into_luma(self) -> Luma<Linear<Wp>, T> {
                Luma::$from_fn(self)
            }
        }
    };
}

impl_into_color!(Xyz, from_xyz);
impl_into_color!(Yxy, from_yxy);
impl_into_color!(Lab, from_lab);
impl_into_color!(Lch, from_lch);
impl_into_color_rgb!(Hsl, from_hsl);
impl_into_color_rgb!(Hsv, from_hsv);
impl_into_color_rgb!(Hwb, from_hwb);

#[cfg(test)]
mod tests {
    use std::marker::PhantomData;
    use num_traits::Float;
    use Component;
    use Linear;
    use rgb::{Rgb, RgbSpace};
    use luma::Luma;
    use {Color, Hsl, Hsv, Hwb, Lab, Lch, Xyz, Yxy};

    #[derive(Copy, Clone, FromColor, IntoColor)]
    #[palette_manual_from(Xyz, Luma = "from_luma_internal")]
    #[palette_manual_into(Xyz, Luma = "into_luma_internal")]
    #[palette_white_point = "S::WhitePoint"]
    #[palette_component = "f64"]
    #[palette_rgb_space = "S"]
    #[palette_internal]
    struct WithXyz<S: RgbSpace>(PhantomData<S>);

    impl<S: RgbSpace> WithXyz<S> {
        fn from_luma_internal(_color: Luma<Linear<S::WhitePoint>, f64>) -> Self {
            WithXyz(PhantomData)
        }

        fn into_luma_internal(self) -> Luma<Linear<S::WhitePoint>, f64> {
            Luma::new(1.0)
        }
    }

    impl<S: RgbSpace> From<Xyz<S::WhitePoint, f64>> for WithXyz<S> {
        fn from(_color: Xyz<S::WhitePoint, f64>) -> Self {
            WithXyz(PhantomData)
        }
    }

    impl<S: RgbSpace> Into<Xyz<S::WhitePoint, f64>> for WithXyz<S> {
        fn into(self) -> Xyz<S::WhitePoint, f64> {
            Xyz::with_wp(0.0, 1.0, 0.0)
        }
    }

    #[derive(Copy, Clone, FromColor, IntoColor)]
    #[palette_manual_from(Lch, Luma = "from_luma_internal")]
    #[palette_manual_into(Lch, Luma = "into_luma_internal")]
    #[palette_white_point = "::white_point::E"]
    #[palette_component = "T"]
    #[palette_rgb_space = "(::encoding::Srgb, ::white_point::E)"]
    #[palette_internal]
    struct WithoutXyz<T: Component + Float>(PhantomData<T>);

    impl<T: Component + Float> WithoutXyz<T> {
        fn from_luma_internal(_color: Luma<Linear<::white_point::E>, T>) -> Self {
            WithoutXyz(PhantomData)
        }

        fn into_luma_internal(self) -> Luma<Linear<::white_point::E>, T> {
            Luma::new(T::one())
        }
    }

    impl<T: Component + Float> From<Lch<::white_point::E, T>> for WithoutXyz<T> {
        fn from(_color: Lch<::white_point::E, T>) -> Self {
            WithoutXyz(PhantomData)
        }
    }

    impl<T: Component + Float> Into<Lch<::white_point::E, T>> for WithoutXyz<T> {
        fn into(self) -> Lch<::white_point::E, T> {
            Lch::with_wp(T::one(), T::zero(), T::zero())
        }
    }

    #[test]
    fn from_with_xyz() {
        let xyz: Xyz<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(xyz);

        let yxy: Yxy<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(yxy);

        let lab: Lab<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(lab);

        let lch: Lch<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(lch);

        let rgb: Rgb<::encoding::Srgb, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(rgb);

        let hsl: Hsl<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(hsl);

        let hsv: Hsv<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(hsv);

        let hwb: Hwb<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(hwb);

        let luma: Luma<::encoding::Srgb, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(luma);

        let color: Color<_, f64> = Default::default();
        WithXyz::<::encoding::Srgb>::from(color);
    }

    #[test]
    fn into_with_xyz() {
        let color = WithXyz::<::encoding::Srgb>(PhantomData);

        let _xyz: Xyz<_, f64> = color.into();
        let _yxy: Yxy<_, f64> = color.into();
        let _lab: Lab<_, f64> = color.into();
        let _lch: Lch<_, f64> = color.into();
        let _rgb: Rgb<::encoding::Srgb, f64> = color.into();
        let _hsl: Hsl<_, f64> = color.into();
        let _hsv: Hsv<_, f64> = color.into();
        let _hwb: Hwb<_, f64> = color.into();
        let _luma: Luma<::encoding::Srgb, f64> = color.into();
        let _color: Color<::encoding::Srgb, f64> = color.into();
    }

    #[test]
    fn from_without_xyz() {
        let xyz: Xyz<::white_point::E, f64> = Default::default();
        WithoutXyz::<f64>::from(xyz);

        let yxy: Yxy<::white_point::E, f64> = Default::default();
        WithoutXyz::<f64>::from(yxy);

        let lab: Lab<::white_point::E, f64> = Default::default();
        WithoutXyz::<f64>::from(lab);

        let lch: Lch<::white_point::E, f64> = Default::default();
        WithoutXyz::<f64>::from(lch);

        let rgb: Rgb<(_, ::encoding::Srgb), f64> = Default::default();
        WithoutXyz::<f64>::from(rgb);

        let hsl: Hsl<_, f64> = Default::default();
        WithoutXyz::<f64>::from(hsl);

        let hsv: Hsv<_, f64> = Default::default();
        WithoutXyz::<f64>::from(hsv);

        let hwb: Hwb<_, f64> = Default::default();
        WithoutXyz::<f64>::from(hwb);

        let luma: Luma<Linear<::white_point::E>, f64> = Default::default();
        WithoutXyz::<f64>::from(luma);

        let color: Color<_, f64> = Default::default();
        WithoutXyz::<f64>::from(color);
    }

    #[test]
    fn into_without_xyz() {
        let color = WithoutXyz::<f64>(PhantomData);

        let _xyz: Xyz<::white_point::E, f64> = color.into();
        let _yxy: Yxy<::white_point::E, f64> = color.into();
        let _lab: Lab<::white_point::E, f64> = color.into();
        let _lch: Lch<::white_point::E, f64> = color.into();
        let _rgb: Rgb<(_, ::encoding::Srgb), f64> = color.into();
        let _hsl: Hsl<_, f64> = color.into();
        let _hsv: Hsv<_, f64> = color.into();
        let _hwb: Hwb<_, f64> = color.into();
        let _luma: Luma<Linear<::white_point::E>, f64> = color.into();
        let _color: Color<_, f64> = color.into();
    }
}