1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use vector::{Vector2, Vector3, Vector4};
use std::{mem, ptr};

macro_rules! matrix {
    ($name:ident : $vec:ident[ $($field:ident = $index:expr),* ] = ($inner:expr, $outer:expr)) => {
        #[derive(Clone, Copy, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
        #[repr(C)]
        #[allow(missing_docs)] //TODO: actually have docs
        pub struct $name<T> {
            $( pub $field : $vec<T>, )*
        }

        //TODO: revise the `Copy` bound here
        impl<T: Copy> From<[[T; $inner]; $outer]> for $name<T> {
            fn from(m: [[T; $inner]; $outer]) -> Self {
                $name {
                    $(
                        $field: m[$index].into(),
                    )*
                }
            }
        }

        impl<T> Into<[[T; $inner]; $outer]> for $name<T> {
            fn into(self) -> [[T; $inner]; $outer] {
                [$( self.$field.into() ),*]
            }
        }

        impl<T> AsRef<[[T; $inner]; $outer]> for $name<T> {
            fn as_ref(&self) -> &[[T; $inner]; $outer] { unsafe { mem::transmute(self) } }
        }

        impl<T: Clone> From<[T; $inner * $outer]> for $name<T> {
            fn from(m: [T; $inner * $outer]) -> Self {
                $name {
                    $(
                        $field: $vec::from_slice(&m[$index*$inner..($index+1)*$inner]),
                    )*
                }
            }
        }

        //TODO: revise the `Copy` bound here
        impl<T: Copy> Into<[T; $inner * $outer]> for $name<T> {
            fn into(self) -> [T; $inner * $outer] {
                unsafe {
                    let mut out: [T; $inner * $outer] = mem::uninitialized();
                    $(
                        ptr::copy_nonoverlapping(self.$field.as_ref().as_ptr(), out[$index*$inner..($index+1)*$inner].as_mut_ptr(), $inner);
                    )*
                    out
                }
            }
        }

        impl<T> AsRef<[T; $inner * $outer]> for $name<T> {
            fn as_ref(&self) -> &[T; $inner * $outer] { unsafe { mem::transmute(self) } }
        }
    };
}

macro_rules! turn {
    ($name:ident : $vec:ident[$( $field:ident [ $($sub:ident),* ]  ),* ] = $transposed:ident) => {
        impl<T> From<$transposed<T>> for $name<T> {
            fn from(m: $transposed<T>) -> Self {
                $name {
                    $(
                        $field: $vec {
                            $(
                                $sub: m.$sub.$field,
                            )*
                        },
                    )*
                }
            }
        }
    }
}

/// 2x2 row-major matrix.
matrix!( RowMatrix2 : Vector2[x=0,y=1] = (2, 2));
turn!( RowMatrix2 : Vector2[x[x,y],y[x,y]] = ColumnMatrix2 );
/// 2x3 row-major matrix.
/// Useful for combining rotation, scale, and translation in 2D space.
matrix!( RowMatrix2x3 : Vector3[x=0,y=1] = (3, 2));
turn!( RowMatrix2x3 : Vector3[x[x,y,z],y[x,y,z]] = ColumnMatrix2x3 );
/// 3x2 row-major matrix.
/// Useful for combining rotation, scale, and translation in 2D space.
matrix!( RowMatrix3x2 : Vector2[x=0,y=1,z=2] = (2, 3));
turn!( RowMatrix3x2 : Vector2[x[x,y],y[x,y],z[x,y]] = ColumnMatrix3x2 );
/// 3x3 row-major matrix.
/// Useful for representing rotation and scale in 3D space.
matrix!( RowMatrix3 : Vector3[x=0,y=1,z=2] = (3, 3));
turn!( RowMatrix3 : Vector3[x[x,y,z],y[x,y,z],z[x,y,z]] = ColumnMatrix3 );
/// 3x4 row-major matrix.
/// Useful for combining rotation, scale, and translation in 3D space.
matrix!( RowMatrix3x4 : Vector4[x=0,y=1,z=2] = (4, 3));
turn!( RowMatrix3x4 : Vector4[x[x,y,z,w],y[x,y,z,w],z[x,y,z,w]] = ColumnMatrix3x4 );
/// 4x3 row-major matrix.
/// Useful for combining rotation, scale, and translation in 3D space.
matrix!( RowMatrix4x3 : Vector3[x=0,y=1,z=2,w=3] = (3, 4));
turn!( RowMatrix4x3 : Vector3[x[x,y,z],y[x,y,z],z[x,y,z],w[x,y,z]] = ColumnMatrix4x3 );
/// 4x4 row-major matrix.
matrix!( RowMatrix4 : Vector4[x=0,y=1,z=2,w=3] = (4, 4));
turn!( RowMatrix4 : Vector4[x[x,y,z,w],y[x,y,z,w],z[x,y,z,w],w[x,y,z,w]] = ColumnMatrix4 );

/// 2x2 column-major matrix.
matrix!( ColumnMatrix2 : Vector2[x=0,y=1] = (2, 2));
turn!( ColumnMatrix2 : Vector2[x[x,y],y[x,y]] = RowMatrix2 );
/// 2x3 column-major matrix.
/// Useful for combining rotation, scale, and translation in 2D space.
matrix!( ColumnMatrix2x3 : Vector2[x=0,y=1,z=2] = (2, 3));
turn!( ColumnMatrix2x3 : Vector2[x[x,y],y[x,y],z[x,y]] = RowMatrix2x3 );
/// 3x2 column-major matrix.
/// Useful for combining rotation, scale, and translation in 2D space.
matrix!( ColumnMatrix3x2 : Vector3[x=0,y=1] = (3, 2));
turn!( ColumnMatrix3x2 : Vector3[x[x,y,z],y[x,y,z]] = RowMatrix3x2 );
/// 3x3 column-major matrix.
/// Useful for representing rotation and scale in 3D space.
matrix!( ColumnMatrix3 : Vector3[x=0,y=1,z=2] = (3, 3));
turn!( ColumnMatrix3 : Vector3[x[x,y,z],y[x,y,z],z[x,y,z]] = RowMatrix3 );
/// 3x4 column-major matrix.
/// Useful for combining rotation, scale, and translation in 3D space.
matrix!( ColumnMatrix3x4 : Vector3[x=0,y=1,z=2,w=3] = (3, 4));
turn!( ColumnMatrix3x4 : Vector3[x[x,y,z],y[x,y,z],z[x,y,z],w[x,y,z]] = RowMatrix3x4 );
/// 4x3 column-major matrix.
/// Useful for combining rotation, scale, and translation in 3D space.
matrix!( ColumnMatrix4x3 : Vector4[x=0,y=1,z=2] = (4, 3));
turn!( ColumnMatrix4x3 : Vector4[x[x,y,z,w],y[x,y,z,w],z[x,y,z,w]] = RowMatrix4x3 );
/// 4x4 column-major matrix.
matrix!( ColumnMatrix4 : Vector4[x=0,y=1,z=2,w=3] = (4, 4));
turn!( ColumnMatrix4 : Vector4[x[x,y,z,w],y[x,y,z,w],z[x,y,z,w],w[x,y,z,w]] = RowMatrix4 );