1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
//! Tools to iterate over paths. //! //! # Lyon path iterators //! //! ## Overview //! //! This module provides a collection of traits to extend the Iterator trait with //! information about the state of the cursor moving along the path. This is useful //! because the way some events are described require to have information about the //! previous events. For example the event `LinTo` gives the next position and it is //! generally useful to have access to the current position in order to make something //! out of it. Likewise, Some Svg events are given in relative coordinates and/or //! are expressed in a way that the first control point is deduced from the position //! of the previous control point. //! //! All of this extra information is conveniently exposed in the `PathState` struct //! that can be accessed by `PathIterator`, `SvgIterator` and `FlattenedIterator`. //! //! The `PathIter<Iter>` adapter automatically implements `PathIterator` for //! any `Iter` that implements `Iterator<PathEvent>` //! //! This module provides adapters between these iterator types. For example iterating //! over a sequence of SVG events can be automatically translated into iterating over //! simpler path events which express all positions with absolute coordinates, among //! other things. //! //! The trait `PathIterator` is what some of the tessellation algorithms //! of the `lyon_tessellation` crate take as input. //! //! ## Examples //! //! ``` //! extern crate lyon_path; //! use lyon_path::iterator::*; //! use lyon_path::math::{point, vector}; //! use lyon_path::{PathEvent, SvgEvent, FlattenedEvent}; //! //! fn main() { //! let events = vec![ //! SvgEvent::MoveTo(point(1.0, 1.0)), //! SvgEvent::RelativeQuadraticTo(vector(4.0, 5.0), vector(-1.0, 4.0)), //! SvgEvent::SmoothCubicTo(point(3.0, 1.0), point(10.0, -3.0)), //! SvgEvent::Close, //! ]; //! //! // A simple std::iter::Iterator<SvgEvent>, //! let simple_iter = events.iter().cloned(); //! //! // Make it a SvgIterator (keeps tracks of the path state). //! let svg_path_iter = SvgPathIter::new(simple_iter); //! //! // Make it a PathIterator (iterates on simpler PathEvents). //! let path_iter = svg_path_iter.path_events(); //! // Equivalent to: //! // let path_iter = PathEvents::new(svg_path_iter); //! //! // Make it an iterator over even simpler primitives: FlattenedEvent, //! // which do not contain any curve. To do so we approximate each curve //! // linear segments according to a tolerance threshold which controls //! // the tradeoff between fidelity of the approximation and amount of //! // generated events. Let's use a tolerance threshold of 0.01. //! // The beauty of this approach is that the flattening happens lazily //! // while iterating with no memory allocation. //! let flattened_iter = path_iter.flattened(0.01); //! // equivalent to: //! // let flattened = Flattened::new(0.01, path_iter); //! //! for evt in flattened_iter { //! match evt { //! FlattenedEvent::MoveTo(p) => { println!(" - move to {:?}", p); } //! FlattenedEvent::LineTo(p) => { println!(" - line to {:?}", p); } //! FlattenedEvent::Close => { println!(" - close"); } //! } //! } //! } //! ``` //! //! An equivalent (but shorter) version of the above code takes advantage of the //! fact you can get a flattening iterator directly from an `SvgIterator`: //! //! ``` //! extern crate lyon_path; //! use lyon_path::iterator::*; //! use lyon_path::math::{point, vector}; //! use lyon_path::SvgEvent; //! //! fn main() { //! let events = vec![ //! SvgEvent::MoveTo(point(1.0, 1.0)), //! SvgEvent::RelativeQuadraticTo(vector(4.0, 5.0), vector(-1.0, 4.0)), //! SvgEvent::SmoothCubicTo(point(3.0, 1.0), point(10.0, -3.0)), //! SvgEvent::Close, //! ]; //! //! for evt in SvgPathIter::new(events.iter().cloned()).flattened(0.01) { //! // ... //! } //! } //! ``` use std::iter; use math::*; use {PathEvent, SvgEvent, FlattenedEvent, QuadraticEvent, PathState}; use geom::{QuadraticBezierSegment, CubicBezierSegment, quadratic_bezier, cubic_bezier}; use geom::arc; /// An extension to the common Iterator interface, that adds information which is useful when /// chaining path-specific iterators. pub trait PathIterator: Iterator<Item = PathEvent> + Sized { // TODO(breaking change) - return path state by value and provide access // to first/previous/ctrl by value separately. /// The returned structure exposes the current position, the first position in the current /// sub-path, and the position of the last control point. fn get_state(&self) -> &PathState; /// Returns an iterator that turns curves into line segments. fn flattened(self, tolerance: f32) -> Flattened<Self> { Flattened::new(tolerance, self) } /// Returns an iterator applying a 2D transform to all of its events. fn transformed(self, mat: &Transform2D) -> Transformed<Self> { Transformed::new(mat, self) } } /// An extension to the common Iterator interface, that adds information which is useful when /// chaining path-specific iterators. pub trait SvgIterator: Iterator<Item = SvgEvent> + Sized { /// The returned structure exposes the current position, the first position in the current /// sub-path, and the position of the last control point. fn get_state(&self) -> &PathState; /// Returns an iterator of FlattenedEvents, turning curves into sequences of line segments. fn flattened(self, tolerance: f32) -> Flattened<PathEvents<Self>> { self.path_events().flattened(tolerance) } /// Returns an iterator of path events. fn path_events(self) -> PathEvents<Self> { PathEvents::new(self) } } /// An extension to the common Iterator interface, that adds information which is useful when /// chaining path-specific iterators. pub trait FlattenedIterator: Iterator<Item = FlattenedEvent> + Sized { /// The returned structure exposes the current position, the first position in the current /// sub-path, and the position of the last control point. fn get_state(&self) -> &PathState; /// Returns an iterator of path events. fn path_events(self) -> iter::Map<Self, fn(FlattenedEvent) -> PathEvent> { self.map(flattened_to_path_event) } /// Returns an iterator of svg events. fn svg_events(self) -> iter::Map<Self, fn(FlattenedEvent) -> SvgEvent> { self.map(flattened_to_svg_event) } /// Returns an iterator applying a 2D transform to all of its events. fn transformed(self, mat: &Transform2D) -> Transformed<Self> { Transformed::new(mat, self) } } /// An extension to the common Iterator interface, that adds information which is useful when /// chaining path-specific iterators. pub trait QuadraticPathIterator: Iterator<Item = QuadraticEvent> + Sized { /// The returned structure exposes the current position, the first position in the current /// sub-path, and the position of the last control point. fn get_state(&self) -> &PathState; /// Returns an iterator of path events. fn path_events(self) -> iter::Map<Self, fn(QuadraticEvent) -> PathEvent> { self.map(quadratic_to_path_event) } /// Returns an iterator of svg events. fn svg_events(self) -> iter::Map<Self, fn(QuadraticEvent) -> SvgEvent> { self.map(quadratic_to_svg_event) } /// Returns an iterator applying a 2D transform to all of its events. fn transformed(self, mat: &Transform2D) -> Transformed<Self> { Transformed::new(mat, self) } } pub struct PathEvents<SvgIter> { it: SvgIter, } impl<SvgIter> PathEvents<SvgIter> { pub fn new(it: SvgIter) -> Self { PathEvents { it } } } impl<SvgIter> PathIterator for PathEvents<SvgIter> where SvgIter: SvgIterator, { fn get_state(&self) -> &PathState { self.it.get_state() } } impl<SvgIter> Iterator for PathEvents<SvgIter> where SvgIter: SvgIterator, { type Item = PathEvent; fn next(&mut self) -> Option<PathEvent> { match self.it.next() { Some(svg_evt) => Some(self.get_state().svg_to_path_event(svg_evt)), None => None, } } } /// An iterator that consumes an PathIterator and yields FlattenedEvents. pub struct Flattened<Iter> { it: Iter, current_curve: TmpFlatteningIter, tolerance: f32, } enum TmpFlatteningIter { Quadratic(quadratic_bezier::Flattened<f32>), Cubic(cubic_bezier::Flattened<f32>), Arc(arc::Flattened<f32>), None, } impl<Iter: PathIterator> Flattened<Iter> { /// Create the iterator. pub fn new(tolerance: f32, it: Iter) -> Self { Flattened { it, current_curve: TmpFlatteningIter::None, tolerance, } } } impl<Iter> FlattenedIterator for Flattened<Iter> where Iter: PathIterator, { fn get_state(&self) -> &PathState { self.it.get_state() } } impl<Iter> Iterator for Flattened<Iter> where Iter: PathIterator, { type Item = FlattenedEvent; fn next(&mut self) -> Option<FlattenedEvent> { match self.current_curve { TmpFlatteningIter::Quadratic(ref mut it) => { if let Some(point) = it.next() { return Some(FlattenedEvent::LineTo(point)); } } TmpFlatteningIter::Cubic(ref mut it) => { if let Some(point) = it.next() { return Some(FlattenedEvent::LineTo(point)); } } TmpFlatteningIter::Arc(ref mut it) => { if let Some(point) = it.next() { return Some(FlattenedEvent::LineTo(point)); } } _ => {} } self.current_curve = TmpFlatteningIter::None; let current = self.get_state().current; match self.it.next() { Some(PathEvent::MoveTo(to)) => Some(FlattenedEvent::MoveTo(to)), Some(PathEvent::LineTo(to)) => Some(FlattenedEvent::LineTo(to)), Some(PathEvent::Close) => Some(FlattenedEvent::Close), Some(PathEvent::QuadraticTo(ctrl, to)) => { self.current_curve = TmpFlatteningIter::Quadratic( QuadraticBezierSegment { from: current, ctrl, to, }.flattened(self.tolerance) ); self.next() } Some(PathEvent::CubicTo(ctrl1, ctrl2, to)) => { self.current_curve = TmpFlatteningIter::Cubic( CubicBezierSegment { from: current, ctrl1, ctrl2, to, }.flattened(self.tolerance) ); self.next() } Some(PathEvent::Arc(center, radii, sweep_angle, x_rotation)) => { let start_angle = (current - center).angle_from_x_axis() - x_rotation; self.current_curve = TmpFlatteningIter::Arc( arc::Arc { center, radii, start_angle, sweep_angle, x_rotation }.flattened(self.tolerance) ); self.next() } None => None, } } } // TODO: SvgPathIter and PathIter should be merged into a single struct using // specialization to implement the Iterator trait depending on the type of // event but specialization isn't stable in rust yet. /// An adapater iterator that implements SvgIterator on top of an Iterator<Item=SvgEvent>. pub struct SvgPathIter<Iter> { it: Iter, state: PathState, } impl<E, Iter> SvgPathIter<Iter> where E: Into<SvgEvent>, Iter: Iterator<Item = E> { pub fn new(it: Iter) -> Self { SvgPathIter { it, state: PathState::new(), } } } impl<E, Iter> SvgIterator for SvgPathIter<Iter> where E: Into<SvgEvent>, Iter: Iterator<Item = E> { fn get_state(&self) -> &PathState { &self.state } } impl<E, Iter> Iterator for SvgPathIter<Iter> where E: Into<SvgEvent>, Iter: Iterator<Item = E> { type Item = SvgEvent; fn next(&mut self) -> Option<SvgEvent> { if let Some(evt) = self.it.next() { let svg_evt = evt.into(); self.state.svg_event(svg_evt); return Some(svg_evt); } None } } /// An adapater iterator that implements PathIterator on top of an Iterator<Item=PathEvent>. pub struct PathIter<Iter> { it: Iter, state: PathState, } impl<E, Iter> PathIter<Iter> where E: Into<PathEvent>, Iter: Iterator<Item = E> { pub fn new(it: Iter) -> Self { PathIter { it, state: PathState::new(), } } } impl<E, Iter> PathIterator for PathIter<Iter> where E: Into<PathEvent>, Iter: Iterator<Item = E> { fn get_state(&self) -> &PathState { &self.state } } impl<E, Iter> Iterator for PathIter<Iter> where E: Into<PathEvent>, Iter: Iterator<Item = E> { type Item = PathEvent; fn next(&mut self) -> Option<PathEvent> { if let Some(evt) = self.it.next() { let path_evt = evt.into(); self.state.path_event(path_evt); return Some(path_evt); } None } } #[inline] fn quadratic_to_path_event(evt: QuadraticEvent) -> PathEvent { evt.to_path_event() } #[inline] fn quadratic_to_svg_event(evt: QuadraticEvent) -> SvgEvent { evt.to_svg_event() } #[inline] fn flattened_to_path_event(evt: FlattenedEvent) -> PathEvent { evt.to_path_event() } #[inline] fn flattened_to_svg_event(evt: FlattenedEvent) -> SvgEvent { evt.to_svg_event() } /// Applies a 2D transform to a path iterator and yields the resulting path iterator. pub struct Transformed<I> { it: I, transform: Transform2D, } impl<I, Event> Transformed<I> where I: Iterator<Item = Event>, Event: Transform { /// Creates a new transformed path iterator from a path iterator. #[inline] pub fn new(transform: &Transform2D, it: I) -> Transformed<I> { Transformed { it, transform: *transform, } } } impl<I, Event> Iterator for Transformed<I> where I: Iterator<Item = Event>, Event: Transform { type Item = Event; fn next(&mut self) -> Option<Event> { match self.it.next() { None => None, Some(ref evt) => Some(evt.transform(&self.transform)), } } } /// An iterator that consumes an iterator of `Point`s and produces `FlattenedEvent`s. /// /// # Example /// /// ``` /// # extern crate lyon_path; /// # use lyon_path::iterator::FromPolyline; /// # use lyon_path::math::point; /// # fn main() { /// let points = [ /// point(1.0, 1.0), /// point(2.0, 1.0), /// point(1.0, 2.0) /// ]; /// let iter = FromPolyline::closed(points.iter().cloned()); /// # } /// ``` pub struct FromPolyline<Iter> { iter: Iter, first: bool, done: bool, close: bool, } impl<Iter: Iterator<Item = Point>> FromPolyline<Iter> { pub fn new(close: bool, iter: Iter) -> Self { FromPolyline { iter, first: true, done: false, close, } } pub fn closed(iter: Iter) -> Self { FromPolyline::new(true, iter) } pub fn open(iter: Iter) -> Self { FromPolyline::new(false, iter) } /// Consumes self and returns an adapter that implements PathIterator. pub fn path_iter(self) -> PathIter<Self> { PathIter::new(self) } } impl<Iter> Iterator for FromPolyline<Iter> where Iter: Iterator<Item = Point>, { type Item = FlattenedEvent; fn next(&mut self) -> Option<FlattenedEvent> { if self.done { return None; } if let Some(next) = self.iter.next() { return Some( if self.first { self.first = false; FlattenedEvent::MoveTo(next) } else { FlattenedEvent::LineTo(next) } ); } self.done = true; if self.close { return Some(FlattenedEvent::Close); } None } } #[test] fn test_from_polyline_open() { let points = &[ point(1.0, 1.0), point(3.0, 1.0), point(4.0, 5.0), point(5.0, 2.0), ]; let mut evts = FromPolyline::open(points.iter().cloned()); assert_eq!(evts.next(), Some(FlattenedEvent::MoveTo(point(1.0, 1.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::LineTo(point(3.0, 1.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::LineTo(point(4.0, 5.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::LineTo(point(5.0, 2.0)))); assert_eq!(evts.next(), None); } #[test] fn test_from_polyline_closed() { let points = &[ point(1.0, 1.0), point(3.0, 1.0), point(4.0, 5.0), point(5.0, 2.0), ]; let mut evts = FromPolyline::closed(points.iter().cloned()); assert_eq!(evts.next(), Some(FlattenedEvent::MoveTo(point(1.0, 1.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::LineTo(point(3.0, 1.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::LineTo(point(4.0, 5.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::LineTo(point(5.0, 2.0)))); assert_eq!(evts.next(), Some(FlattenedEvent::Close)); }