1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
#![doc(html_logo_url = "https://nical.github.io/lyon-doc/lyon-logo.svg")] #![deny(bare_trait_objects)] //! Simple 2D geometric primitives on top of euclid. //! //! This crate is reexported in [lyon](https://docs.rs/lyon/). //! //! # Overview. //! //! This crate implements some of the maths to work with: //! //! - lines and line segments, //! - quadratic and cubic bézier curves, //! - elliptic arcs, //! - triangles. //! //! # Flattening //! //! Flattening is the action of approximating a curve with a succession of line segments. //! //! <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm"> //! <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/> //! <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/> //! <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/> //! <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/> //! <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> //! <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/> //! <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/> //! <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> //! <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> //! <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/> //! <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/> //! <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/> //! <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)"> //! <tspan x="35.74" y="284.49" font-size="10.58">→</tspan> //! </text> //! </svg> //! //! The flattening algorithm implemented in this crate is based on the paper //! [Fast, Precise Flattening of Cubic Bézier Segment Offset Curves](http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf). //! It tends to produce a better approximations than the usual recursive subdivision approach (or //! in other words, it generates less segments for a given tolerance threshold). //! //! The tolerance threshold taken as input by the flattening algorithms corresponds //! to the maximum distance between the curve and its linear approximation. //! The smaller the tolerance is, the more precise the approximation and the more segments //! are generated. This value is typically chosen in function of the zoom level. //! //! <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg"> //! <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/> //! <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/> //! <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/> //! <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/> //! <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/> //! <g fill="none" stroke="#ff7f2a" stroke-width=".26"> //! <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/> //! </g> //! </svg> //! //! The figure above shows a close up on a curve (the dotted line) and its linear //! approximation (the black segments). The tolerance threshold is represented by //! the light green area and the orange arrow. //! //#![allow(needless_return)] // clippy // Reexport dependencies. pub use arrayvec; pub use euclid; #[cfg(feature = "serialization")] #[macro_use] pub extern crate serde; #[macro_use] mod segment; pub mod quadratic_bezier; pub mod cubic_bezier; pub mod arc; pub mod utils; pub mod cubic_to_quadratic; mod cubic_bezier_intersections; mod flatten_cubic; mod triangle; mod line; mod monotonic; #[doc(inline)] pub use crate::quadratic_bezier::QuadraticBezierSegment; #[doc(inline)] pub use crate::cubic_bezier::CubicBezierSegment; #[doc(inline)] pub use crate::triangle::{Triangle}; #[doc(inline)] pub use crate::line::{LineSegment, Line, LineEquation}; #[doc(inline)] pub use crate::arc::{Arc, SvgArc, ArcFlags}; #[doc(inline)] pub use crate::segment::{Segment, BezierSegment}; #[doc(inline)] pub use crate::monotonic::Monotonic; mod scalar { pub(crate) use num_traits::{Float, FloatConst, NumCast}; pub(crate) use num_traits::One; pub(crate) use num_traits::cast::cast; pub(crate) use euclid::Trig; use std::fmt::{Display, Debug}; use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign}; pub trait Scalar : Float + NumCast + FloatConst + Sized + Display + Debug + Trig + AddAssign + SubAssign + MulAssign + DivAssign { const HALF: Self; const ZERO: Self; const ONE: Self; const TWO: Self; const THREE: Self; const FOUR: Self; const FIVE: Self; const SIX: Self; const SEVEN: Self; const EIGHT: Self; const NINE: Self; const TEN: Self; const EPSILON: Self; fn value(v: f32) -> Self; } impl Scalar for f32 { const HALF: Self = 0.5; const ZERO: Self = 0.0; const ONE: Self = 1.0; const TWO: Self = 2.0; const THREE: Self = 3.0; const FOUR: Self = 4.0; const FIVE: Self = 5.0; const SIX: Self = 6.0; const SEVEN: Self = 7.0; const EIGHT: Self = 8.0; const NINE: Self = 9.0; const TEN: Self = 10.0; const EPSILON: Self = 1e-5; #[inline] fn value(v: f32) -> Self { v } } impl Scalar for f64 { const HALF: Self = 0.5; const ZERO: Self = 0.0; const ONE: Self = 1.0; const TWO: Self = 2.0; const THREE: Self = 3.0; const FOUR: Self = 4.0; const FIVE: Self = 5.0; const SIX: Self = 6.0; const SEVEN: Self = 7.0; const EIGHT: Self = 8.0; const NINE: Self = 9.0; const TEN: Self = 10.0; const EPSILON: Self = 1e-8; #[inline] fn value(v: f32) -> Self { v as f64 } } } mod generic_math { /// Alias for `euclid::Point2D`. pub use euclid::Point2D as Point; /// Alias for `euclid::Vector2D`. pub use euclid::Vector2D as Vector; /// Alias for `euclid::Size2D`. pub use euclid::Size2D as Size; /// Alias for `euclid::Rect` pub use euclid::Rect; /// Alias for `euclid::Transform2D` pub use euclid::Transform2D; /// Alias for `euclid::Rotation2D` pub use euclid::Rotation2D; /// An angle in radians. pub use euclid::Angle; /// Shorthand for `Rect::new(Point::new(x, y), Size::new(w, h))`. pub use euclid::rect; /// Shorthand for `Vector::new(x, y)`. pub use euclid::vec2 as vector; /// Shorthand for `Point::new(x, y)`. pub use euclid::point2 as point; /// Shorthand for `Size::new(x, y)`. pub use euclid::size2 as size; } pub mod math { //! Basic types that are used everywhere. Most other lyon crates //! reexport them. use euclid; /// Alias for ```euclid::Point2D<f32>```. pub type Point = euclid::Point2D<f32>; /// Alias for ```euclid::Point2D<f64>```. pub type F64Point = euclid::Point2D<f64>; /// Alias for ```euclid::Point2D<f32>```. pub type Vector = euclid::Vector2D<f32>; /// Alias for ```euclid::Size2D<f32>```. pub type Size = euclid::Size2D<f32>; /// Alias for ```euclid::Rect<f32>``` pub type Rect = euclid::Rect<f32>; /// Alias for ```euclid::Transform2D<f32>``` pub type Transform2D = euclid::Transform2D<f32>; /// Alias for ```euclid::Rotation2D<f32>``` pub type Rotation2D = euclid::Rotation2D<f32>; /// An angle in radians (f32). pub type Angle = euclid::Angle<f32>; /// Shorthand for `Rect::new(Point::new(x, y), Size::new(w, h))`. pub use euclid::rect; /// Shorthand for `Vector::new(x, y)`. pub use euclid::vec2 as vector; /// Shorthand for `Point::new(x, y)`. pub use euclid::point2 as point; /// Shorthand for `Size::new(x, y)`. pub use euclid::size2 as size; /// Anything that can be transformed in 2D. pub trait Transform { fn transform(&self, mat: &Transform2D) -> Self; } } pub mod traits { pub use crate::segment::{Segment, FlattenedForEach, FlatteningStep}; //pub use monotonic::MonotonicSegment; }