1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
///! Computes intersection parameters for two cubic bézier curves using bézier clipping, also known
///! as fat line clipping.
///!
///! The implementation here was originally ported from that of paper.js:
///! https://github.com/paperjs/paper.js/blob/0deddebb2c83ea2a0c848f7c8ba5e22fa7562a4e/src/path/Curve.js#L2008
///! See "Bézier Clipping method" in
///! https://scholarsarchive.byu.edu/facpub/1/
///! for motivation and details of how the process works.

use crate::generic_math::{point, Point, Rect};
use crate::scalar::Scalar;
use crate::CubicBezierSegment;
use arrayvec::ArrayVec;
use std::ops::Range;

// Computes the intersections (if any) between two cubic bézier curves in the form of the `t`
// parameters of each intersection point along the curves.
//
// Returns endpoint intersections where an endpoint intersects the interior of the other curve,
// but not endpoint/endpoint intersections.
//
// Returns no intersections if either curve is a point or if the curves are parallel lines.
pub fn cubic_bezier_intersections_t<S: Scalar>(
    curve1: &CubicBezierSegment<S>,
    curve2: &CubicBezierSegment<S>,
) -> ArrayVec<[(S, S); 9]> {
    if !curve1.fast_bounding_rect().intersects(&curve2.fast_bounding_rect())
        || curve1 == curve2
        || (curve1.from == curve2.to
            && curve1.ctrl1 == curve2.ctrl2
            && curve1.ctrl2 == curve2.ctrl1
            && curve1.to == curve2.from)
    {
        return ArrayVec::new();
    }

    let mut result = ArrayVec::new();

    #[inline]
    fn midpoint<S: Scalar>(point1: &Point<S>, point2: &Point<S>) -> Point<S> {
        point((point1.x + point2.x) * S::HALF, (point1.y + point2.y) * S::HALF)
    }

    let curve1_is_a_point = curve1.is_a_point(S::EPSILON);
    let curve2_is_a_point = curve2.is_a_point(S::EPSILON);
    if curve1_is_a_point && !curve2_is_a_point {
        let point1 = midpoint(&curve1.from, &curve1.to);
        let curve_params = point_curve_intersections(&point1, &curve2, S::EPSILON);
        for t in curve_params {
            if t > S::EPSILON && t < S::ONE - S::EPSILON {
                result.push((S::ZERO, t));
            }
        }
    } else if !curve1_is_a_point && curve2_is_a_point {
        let point2 = midpoint(&curve2.from, &curve2.to);
        let curve_params = point_curve_intersections(&point2, &curve1, S::EPSILON);
        for t in curve_params {
            if t > S::EPSILON && t < S::ONE - S::EPSILON {
                result.push((t, S::ZERO));
            }
        }
    }
    if curve1_is_a_point || curve2_is_a_point {
        // Caller is always responsible for checking endpoints and overlaps, in the case that both
        // curves were points.
        return result;
    }

    let linear1 = curve1.is_linear(S::EPSILON);
    let linear2 = curve2.is_linear(S::EPSILON);
    if linear1 && !linear2 {
        result = line_curve_intersections(curve1, curve2, /* flip */ false);
    } else if !linear1 && linear2 {
        result = line_curve_intersections(curve2, curve1, /* flip */ true);
    } else if linear1 && linear2 {
        result = line_line_intersections(curve1, curve2);
    } else {
        add_curve_intersections(
            &curve1, &curve2, &(S::ZERO..S::ONE), &(S::ZERO..S::ONE),
            &mut result, /* flip */ false, /* recursion_count */ 0, /* call_count */ 0,
            /* original curve1 */ &curve1, /* original curve2 */ &curve2,
        );
    }

    result
}

fn point_curve_intersections<S: Scalar>(
    pt: &Point<S>,
    curve: &CubicBezierSegment<S>,
    epsilon: S,
) -> ArrayVec<[S; 9]> {
    let mut result = ArrayVec::new();

    // (If both endpoints are epsilon close, we only return S::ZERO.)
    if (*pt - curve.from).square_length() < epsilon {
        result.push(S::ZERO);
        return result;
    }
    if (*pt - curve.to).square_length() < epsilon {
        result.push(S::ONE);
        return result;
    }

    let curve_x_t_params = curve.solve_t_for_x(pt.x);
    let curve_y_t_params = curve.solve_t_for_y(pt.y);
    // We want to coalesce parameters representing the same intersection from the x and y
    // directions, but the parameter calculations aren't very accurate, so give a little more
    // leeway there (TODO: this isn't perfect, as you might expect - the dupes that pass here are
    // currently being detected in add_intersection).
    let param_eps = S::TEN * epsilon;
    for params in [curve_x_t_params, curve_y_t_params].iter() {
        for t in params {
            let t = *t;
            if (*pt - curve.sample(t)).square_length() > epsilon {
                continue;
            }
            let mut already_found_t = false;
            for u in &result {
                if S::abs(t - *u) < param_eps {
                    already_found_t = true;
                    break;
                }
            }
            if !already_found_t {
                result.push(t);
            }
        }
    }

    if result.len() > 0 {
        return result;
    }

    // The remaining case is if pt is within epsilon of an interior point of curve, but not within
    // the x-range or y-range of the curve (which we already checked) - for example if curve is a
    // horizontal line that extends beyond its endpoints, and pt is just outside an end of the line;
    // or if the curve has a cusp in one of the corners of its convex hull and pt is
    // diagonally just outside the hull.  This is a rare case (could we even ignore it?).
    #[inline]
    fn maybe_add<S: Scalar>(t: S, pt: &Point<S>, curve: &CubicBezierSegment<S>, epsilon: S,
                            result: &mut ArrayVec<[S; 9]>) -> bool
    {
        if (curve.sample(t) - *pt).square_length() < epsilon {
            result.push(t);
            return true;
        }
        false
    }

    let _ = maybe_add(curve.x_minimum_t(), pt, curve, epsilon, &mut result)
        || maybe_add(curve.x_maximum_t(), pt, curve, epsilon, &mut result)
        || maybe_add(curve.y_minimum_t(), pt, curve, epsilon, &mut result)
        || maybe_add(curve.y_maximum_t(), pt, curve, epsilon, &mut result);

    result
}

fn line_curve_intersections<S: Scalar>(
    line_as_curve: &CubicBezierSegment<S>,
    curve: &CubicBezierSegment<S>,
    flip: bool,
) -> ArrayVec<[(S, S); 9]> {
    let mut result = ArrayVec::new();
    let baseline = line_as_curve.baseline();
    let curve_intersections = curve.line_intersections_t(&baseline.to_line());
    let line_is_mostly_vertical =
        S::abs(baseline.from.y - baseline.to.y) >= S::abs(baseline.from.x - baseline.to.x);
    for curve_t in curve_intersections {
        let line_intersections = if line_is_mostly_vertical {
            let intersection_y = curve.y(curve_t);
            line_as_curve.solve_t_for_y(intersection_y)
        } else {
            let intersection_x = curve.x(curve_t);
            line_as_curve.solve_t_for_x(intersection_x)
        };

        for line_t in line_intersections {
            add_intersection(line_t, line_as_curve, curve_t, curve, flip, &mut result);
        }
    }

    result
}

fn line_line_intersections<S: Scalar>(
    curve1: &CubicBezierSegment<S>,
    curve2: &CubicBezierSegment<S>,
) -> ArrayVec<[(S, S); 9]> {
    let mut result = ArrayVec::new();

    let intersection = curve1.baseline().to_line().intersection(&curve2.baseline().to_line());
    if intersection.is_none() {
        return result;
    }

    let intersection = intersection.unwrap();

    #[inline]
    fn parameters_for_line_point<S: Scalar>(
        curve: &CubicBezierSegment<S>,
        pt: &Point<S>,
    ) -> ArrayVec<[S; 3]> {
        let line_is_mostly_vertical =
            S::abs(curve.from.y - curve.to.y) >= S::abs(curve.from.x - curve.to.x);
        if line_is_mostly_vertical {
            curve.solve_t_for_y(pt.y)
        } else {
            curve.solve_t_for_x(pt.x)
        }
    }

    let line1_params = parameters_for_line_point(&curve1, &intersection);
    if line1_params.len() == 0 {
        return result;
    }

    let line2_params = parameters_for_line_point(&curve2, &intersection);
    if line2_params.len() == 0 {
        return result;
    }

    for t1 in &line1_params {
        for t2 in &line2_params {
            // It could be argued that an endpoint intersection located in the interior of one
            // or both curves should be returned here; we currently don't.
            add_intersection(*t1, curve1, *t2, curve2, /* flip */ false, &mut result);
        }
    }

    result
}

// This function implements the main bézier clipping algorithm by recursively subdividing curve1 and
// curve2 in to smaller and smaller portions of the original curves with the property that one of
// the curves intersects the fat line of the other curve at each stage.
//
// curve1 and curve2 at each stage are sub-bézier curves of the original curves; flip tells us
// whether curve1 at a given stage is a subcurve of the original curve1 or the original curve2;
// similarly for curve2.  domain1 and domain2 shrink (or stay the same) at each stage and describe
// which subdomain of an original curve the current curve1 and curve2 correspond to. (The domains of
// curve1 and curve2 are 0..1 at every stage.)
fn add_curve_intersections<S: Scalar>(
    curve1: &CubicBezierSegment<S>,
    curve2: &CubicBezierSegment<S>,
    domain1: &Range<S>,
    domain2: &Range<S>,
    intersections: &mut ArrayVec<[(S, S); 9]>,
    flip: bool,
    mut recursion_count: u32,
    mut call_count: u32,
    orig_curve1: &CubicBezierSegment<S>,
    orig_curve2: &CubicBezierSegment<S>,
) -> u32  {
    call_count += 1;
    recursion_count += 1;
    if call_count >= 4096 || recursion_count >= 60 {
        return call_count;
    }

    let epsilon = if inputs_are_f32::<S>() { S::value(5e-6) } else { S::value(1e-9) };

    if domain2.start == domain2.end || curve2.is_a_point(S::ZERO) {
        add_point_curve_intersection(
            &curve2, /* point is curve1 */ false, curve1, domain2, domain1, intersections, flip,
        );
        return call_count;
    } else if curve2.from == curve2.to {
        // There's no curve2 baseline to fat-line against (and we'll (debug) crash if we try with
        // the current implementation), so split curve2 and try again.
        let new_2_curves = orig_curve2.split_range(domain2.clone()).split(S::HALF);
        let domain2_mid = (domain2.start + domain2.end) * S::HALF;
        call_count = add_curve_intersections(
            curve1, &new_2_curves.0, domain1, &(domain2.start..domain2_mid),
            intersections, flip, recursion_count, call_count,
            orig_curve1, orig_curve2,
        );
        call_count = add_curve_intersections(
            curve1, &new_2_curves.1, domain1, &(domain2_mid..domain2.end),
            intersections, flip, recursion_count, call_count,
            orig_curve1, orig_curve2,
        );
        return call_count;
    }

    // (Don't call this before checking for point curves: points are inexact and can lead to false
    // negatives here.)
    if !rectangles_overlap(&curve1.fast_bounding_rect(), &curve2.fast_bounding_rect()) {
        return call_count;
    }

    let (t_min_clip, t_max_clip) = match restrict_curve_to_fat_line(curve1, curve2) {
        Some((min, max)) => (min, max),
        None => return call_count,
    };

    // t_min_clip and t_max_clip are (0, 1)-based, so project them back to get the new restricted
    // range:
    let new_domain1 =
        &(domain_value_at_t(&domain1, t_min_clip)..domain_value_at_t(&domain1, t_max_clip));

    if S::max(domain2.end - domain2.start, new_domain1.end - new_domain1.start) < epsilon {
        let t1 = (new_domain1.start + new_domain1.end) * S::HALF;
        let t2 = (domain2.start + domain2.end) * S::HALF;
        if inputs_are_f32::<S>() {
            // There's an unfortunate tendency for curve2 endpoints that end near (but not all
            // that near) to the interior of curve1 to register as intersections, so try to avoid
            // that. (We could be discarding a legitimate intersection here.)
            let end_eps = S::value(1e-3);
            if (t2 < end_eps || t2 > S::ONE - end_eps)
                && (orig_curve1.sample(t1) - orig_curve2.sample(t2)).length() > S::FIVE
            {
                return call_count;
            }
        }
        add_intersection(t1, orig_curve1, t2, orig_curve2, flip, intersections);
        return call_count;
    }

    // Reduce curve1 to the part that might intersect curve2.
    let curve1 = &orig_curve1.split_range(new_domain1.clone());

    // (Note: it's possible for new_domain1 to have become a point, even if
    // t_min_clip < t_max_clip. It's also possible for curve1 to not be a point even if new_domain1
    // is a point (but then curve1 will be very small).)
    if new_domain1.start == new_domain1.end || curve1.is_a_point(S::ZERO) {
        add_point_curve_intersection(
            &curve1, /* point is curve1 */ true, curve2, new_domain1, domain2,
            intersections, flip,
        );
        return call_count;
    }

    // If the new range is still 80% or more of the old range, subdivide and try again.
    if t_max_clip - t_min_clip > S::EIGHT / S::TEN {
        // Subdivide the curve which has converged the least.
        if new_domain1.end - new_domain1.start > domain2.end - domain2.start {
            let new_1_curves = curve1.split(S::HALF);
            let new_domain1_mid = (new_domain1.start + new_domain1.end) * S::HALF;
            call_count = add_curve_intersections(
                curve2, &new_1_curves.0, domain2, &(new_domain1.start..new_domain1_mid),
                intersections, !flip, recursion_count, call_count,
                orig_curve2, orig_curve1,
            );
            call_count = add_curve_intersections(
                curve2, &new_1_curves.1, domain2, &(new_domain1_mid..new_domain1.end),
                intersections, !flip, recursion_count, call_count,
                orig_curve2, orig_curve1,
            );
        } else {
            let new_2_curves = orig_curve2.split_range(domain2.clone()).split(S::HALF);
            let domain2_mid = (domain2.start + domain2.end) * S::HALF;
            call_count = add_curve_intersections(
                &new_2_curves.0, curve1, &(domain2.start..domain2_mid), new_domain1,
                intersections, !flip, recursion_count, call_count,
                orig_curve2, orig_curve1,
            );
            call_count = add_curve_intersections(
                &new_2_curves.1, curve1, &(domain2_mid..domain2.end), new_domain1,
                intersections, !flip, recursion_count, call_count,
                orig_curve2, orig_curve1,
            );
        }
    } else {
        // Iterate.
        if domain2.end - domain2.start >= epsilon {
            call_count = add_curve_intersections(
                curve2, curve1, domain2, new_domain1,
                intersections, !flip, recursion_count, call_count,
                orig_curve2, orig_curve1,
            );
        } else {
            // The interval on curve2 is already tight enough, so just continue iterating on curve1.
            call_count = add_curve_intersections(
                curve1, curve2, new_domain1, domain2,
                intersections, flip, recursion_count, call_count,
                orig_curve1, orig_curve2,
            );
        }
    }

    call_count
}

fn add_point_curve_intersection<S: Scalar>(
    pt_curve: &CubicBezierSegment<S>,
    pt_curve_is_curve1: bool,
    curve: &CubicBezierSegment<S>,
    pt_domain: &Range<S>,
    curve_domain: &Range<S>,
    intersections: &mut ArrayVec<[(S, S); 9]>,
    flip: bool,
) {
    let pt = pt_curve.from;
    // We assume pt is curve1 when we add intersections below.
    let flip = if pt_curve_is_curve1 { flip } else { !flip };

    // Generally speaking |curve| will be quite small at this point, so see if we can get away with
    // just sampling here.

    let epsilon = epsilon_for_point(&pt);
    let pt_t = (pt_domain.start + pt_domain.end) * S::HALF;

    let curve_t = {
        let mut t_for_min = S::ZERO;
        let mut min_dist_sq = epsilon;
        let tenths = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
        for &t in tenths.iter() {
            let t = S::value(t);
            let d = (pt - curve.sample(t)).square_length();
            if d < min_dist_sq {
                t_for_min = t;
                min_dist_sq = d;
            }
        }

        if min_dist_sq == epsilon {
            -S::ONE
        } else {
            let curve_t = domain_value_at_t(curve_domain, t_for_min);
            curve_t
        }
    };

    if curve_t != -S::ONE {
        add_intersection(pt_t, pt_curve, curve_t, curve, flip, intersections);
        return;
    }

    // If sampling didn't work, try a different approach.
    let results = point_curve_intersections(&pt, curve, epsilon);
    for t in results {
        let curve_t = domain_value_at_t(curve_domain, t);
        add_intersection(pt_t, pt_curve, curve_t, curve, flip, intersections);
    }
}

// If we're comparing distances between samples of curves, our epsilon should depend on how big the
// points we're comparing are. This function returns an epsilon appropriate for the size of pt.
fn epsilon_for_point<S: Scalar>(pt: &Point<S>) -> S {
    let max = S::max(S::abs(pt.x), S::abs(pt.y));
    let epsilon = if inputs_are_f32::<S>() {
        match max.to_i32().unwrap() {
            0 ... 10 => S::value(0.001),
            10 ... 100 => S::value(0.01),
            100 ... 1_000 => S::value(0.1),
            1_000 ... 10_000 => S::value(0.25),
            10_000 ... 1_000_000 => S::HALF,
            _ => S::ONE,
        }
    } else {
        match max.to_i64().unwrap() {
            0 ... 100_000 => S::EPSILON,
            100_000 ... 100_000_000 => S::value(1e-5),
            100_000_000 ... 10_000_000_000 => S::value(1e-3),
            _ => S::value(1e-1),
        }
    };

    epsilon
}

fn add_intersection<S: Scalar>(
    t1: S,
    orig_curve1: &CubicBezierSegment<S>,
    t2: S,
    orig_curve2: &CubicBezierSegment<S>,
    flip: bool,
    intersections: &mut ArrayVec<[(S, S); 9]>,
) {
    let (t1, t2) = if flip { (t2, t1) } else { (t1, t2) };
    // (This should probably depend in some way on how large our input coefficients are.)
    let epsilon = if inputs_are_f32::<S>() { S::value(1e-3) } else { S::EPSILON };
    // Discard endpoint/endpoint intersections.
    let t1_is_an_endpoint = t1 < epsilon || t1 > S::ONE - epsilon;
    let t2_is_an_endpoint = t2 < epsilon || t2 > S::ONE - epsilon;
    if t1_is_an_endpoint && t2_is_an_endpoint {
        return;
    }

    // We can get repeated intersections when we split a curve at an intersection point, or when
    // two curves intersect at a point where the curves are very close together, or when the fat
    // line process breaks down.
    for i in 0..intersections.len() {
        let (old_t1, old_t2) = intersections[i];
        // f32 errors can be particularly bad (over a hundred) if we wind up keeping the "wrong"
        // duplicate intersection, so always keep the one that minimizes sample distance.
        if S::abs(t1 - old_t1) < epsilon && S::abs(t2 - old_t2) < epsilon {
            let cur_dist =
                (orig_curve1.sample(old_t1) - orig_curve2.sample(old_t2)).square_length();
            let new_dist = (orig_curve1.sample(t1) - orig_curve2.sample(t2)).square_length();
            if new_dist < cur_dist {
                intersections[i] = (t1, t2);
            }
            return;
        }
    }

    if intersections.len() < 9 {
        intersections.push((t1, t2));
    }
}

// Returns an interval (t_min, t_max) with the property that for parameter values outside that
// interval, curve1 is guaranteed to not intersect curve2; uses the fat line of curve2 as its basis
// for the guarantee. (See the Sederberg document for what's going on here.)
fn restrict_curve_to_fat_line<S: Scalar>(
    curve1: &CubicBezierSegment<S>,
    curve2: &CubicBezierSegment<S>,
) -> Option<(S, S)> {
    // TODO: Consider clipping against the perpendicular fat line as well (recommended by
    // Sederberg).
    // TODO: The current algorithm doesn't handle the (rare) case where curve1 and curve2 are
    // overlapping lines.

    let baseline2 = curve2.baseline().to_line().equation();

    let d_0 = baseline2.signed_distance_to_point(&curve1.from);
    let d_1 = baseline2.signed_distance_to_point(&curve1.ctrl1);
    let d_2 = baseline2.signed_distance_to_point(&curve1.ctrl2);
    let d_3 = baseline2.signed_distance_to_point(&curve1.to);

    let (mut top, mut bottom) = convex_hull_of_distance_curve(d_0, d_1, d_2, d_3);
    let (d_min, d_max) = curve2.fat_line_min_max();

    clip_convex_hull_to_fat_line(&mut top, &mut bottom, d_min, d_max)
}

// Returns the convex hull of the curve that's the graph of the function
// t -> d(curve1(t), baseline(curve2)). The convex hull is described as a top and a bottom, where
// each of top and bottom is described by the list of its vertices from left to right (the number of
// vertices for each is variable).
fn convex_hull_of_distance_curve<S: Scalar>(
    d0: S,
    d1: S,
    d2: S,
    d3: S,
) -> (Vec<Point<S>>, Vec<Point<S>>) {
    let p0 = point(S::ZERO, d0);
    let p1 = point(S::ONE / S::THREE, d1);
    let p2 = point(S::TWO / S::THREE, d2);
    let p3 = point(S::ONE, d3);
    // Compute the vertical signed distance of p1 and p2 from [p0, p3].
    let dist1 = d1 - (S::TWO * d0 + d3) / S::THREE;
    let dist2 = d2 - (d0 + S::TWO * d3) / S::THREE;

    // Compute the hull assuming p1 is on top - we'll switch later if needed.
    let mut hull = if dist1 * dist2 < S::ZERO {
        // p1 and p2 lie on opposite sides of [p0, p3], so the hull is a quadrilateral:
        (vec![p0, p1, p3], vec![p0, p2, p3])
    } else {
        // p1 and p2 lie on the same side of [p0, p3]. The hull can be a triangle or a
        // quadrilateral, and [p0, p3] is part of the hull. The hull is a triangle if the vertical
        // distance of one of the middle points p1, p2 is <= half the vertical distance of the
        // other middle point.
        let dist1 = S::abs(dist1);
        let dist2 = S::abs(dist2);
        if dist1 >= S::TWO * dist2 {
            (vec![p0, p1, p3], vec![p0, p3])
        } else if dist2 >= S::TWO * dist1 {
            (vec![p0, p2, p3], vec![p0, p3])
        } else {
            (vec![p0, p1, p2, p3], vec![p0, p3])
        }
    };

    // Flip the hull if needed:
    if dist1 < S::ZERO || (dist1 == S::ZERO && dist2 < S::ZERO) {
        hull = (hull.1, hull.0);
    }

    hull
}

// Returns the min and max values at which the convex hull enters the fat line min/max offset lines.
fn clip_convex_hull_to_fat_line<S: Scalar>(
    hull_top: &mut Vec<Point<S>>,
    hull_bottom: &mut Vec<Point<S>>,
    d_min: S,
    d_max: S,
) -> Option<(S, S)> {
    // Walk from the left corner of the convex hull until we enter the fat line limits:
    let t_clip_min = walk_convex_hull_start_to_fat_line(&hull_top, &hull_bottom, d_min, d_max);
    if let None = t_clip_min {
        return None;
    }
    // Now walk from the right corner of the convex hull until we enter the fat line limits - to
    // walk right to left we just reverse the order of the hull vertices, so that hull_top and
    // hull_bottom start at the right corner now:
    hull_top.reverse();
    hull_bottom.reverse();
    let t_clip_max = walk_convex_hull_start_to_fat_line(&hull_top, &hull_bottom, d_min, d_max);
    if let None = t_clip_max {
        return None;
    }
    Some((t_clip_min.unwrap(), t_clip_max.unwrap()))
}

// Walk the edges of the convex hull until you hit a fat line offset value, starting from the
// (first vertex in hull_top_vertices == first vertex in hull_bottom_vertices).
fn walk_convex_hull_start_to_fat_line<S: Scalar>(
    hull_top_vertices: &Vec<Point<S>>,
    hull_bottom_vertices: &Vec<Point<S>>,
    d_min: S,
    d_max: S,
) -> Option<S> {
    let start_corner = hull_top_vertices[0];

    if start_corner.y < d_min {
        return walk_convex_hull_edges_to_fat_line(hull_top_vertices, true, d_min);
    } else if start_corner.y > d_max {
        return walk_convex_hull_edges_to_fat_line(hull_bottom_vertices, false, d_max);
    } else {
        return Some(start_corner.x);
    }
}

// Do the actual walking, starting from the first vertex of hull_vertices.
fn walk_convex_hull_edges_to_fat_line<S: Scalar>(
    hull_vertices: &Vec<Point<S>>,
    vertices_are_for_top: bool,
    threshold: S,
) -> Option<S> {
    for i in 0..hull_vertices.len() - 1 {
        let p = hull_vertices[i];
        let q = hull_vertices[i + 1];
        if (vertices_are_for_top && q.y >= threshold) || (!vertices_are_for_top && q.y <= threshold)
        {
            if q.y == threshold {
                return Some(q.x);
            } else {
                return Some(p.x + (threshold - p.y) * (q.x - p.x) / (q.y - p.y));
            }
        }
    }
    // All points of the hull are outside the threshold:
    None
}

#[inline]
fn inputs_are_f32<S: Scalar>() -> bool {
    S::EPSILON > S::value(1e-6)
}

#[inline]
// Return the point of domain corresponding to the point t, 0 <= t <= 1.
fn domain_value_at_t<S: Scalar>(domain: &Range<S>, t: S) -> S {
    domain.start + (domain.end - domain.start) * t
}

#[inline]
// Rect.intersects doesn't count edge/corner intersections, this version does.
fn rectangles_overlap<S: Scalar>(r1: &Rect<S>, r2: &Rect<S>) -> bool {
    r1.origin.x <= r2.origin.x + r2.size.width
        && r2.origin.x <= r1.origin.x + r1.size.width
        && r1.origin.y <= r2.origin.y + r2.size.height
        && r2.origin.y <= r1.origin.y + r1.size.height
}

#[cfg(test)]
fn do_test<S: Scalar>(
    curve1: &CubicBezierSegment<S>,
    curve2: &CubicBezierSegment<S>,
    intersection_count: i32,
) {
    do_test_once(curve1, curve2, intersection_count);
    do_test_once(curve2, curve1, intersection_count);
}

#[cfg(test)]
fn do_test_once<S: Scalar>(
    curve1: &CubicBezierSegment<S>,
    curve2: &CubicBezierSegment<S>,
    intersection_count: i32,
) {
    let intersections = cubic_bezier_intersections_t(&curve1, &curve2);
    for intersection in &intersections {
        let p1 = curve1.sample(intersection.0);
        let p2 = curve2.sample(intersection.1);
        check_dist(&p1, &p2);
    }

    assert_eq!(intersections.len() as i32, intersection_count);
}

#[cfg(test)]
fn check_dist<S: Scalar>(p1: &Point<S>, p2: &Point<S>) {
    let dist = S::sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
    if dist > S::HALF {
        assert!(false, "Intersection points too far apart.");
    }
}

#[test]
fn test_cubic_curve_curve_intersections() {
    do_test(
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(0.0, 1.0),
            ctrl2: point(0.0, 1.0),
            to: point(1.0, 1.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 1.0),
            ctrl1: point(1.0, 1.0),
            ctrl2: point(1.0, 1.0),
            to: point(1.0, 0.0),
        },
        1,
    );
    do_test(
        &CubicBezierSegment {
            from: point(48.0f32, 84.0),
            ctrl1: point(104.0, 176.0),
            ctrl2: point(190.0, 37.0),
            to: point(121.0, 75.0),
        },
        &CubicBezierSegment {
            from: point(68.0, 145.0),
            ctrl1: point(74.0, 6.0),
            ctrl2: point(143.0, 197.0),
            to: point(138.0, 55.0),
        },
        4,
    );
    do_test(
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(0.5, 1.0),
            ctrl2: point(0.5, 1.0),
            to: point(1.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 1.0),
            ctrl1: point(0.5, 0.0),
            ctrl2: point(0.5, 0.0),
            to: point(1.0, 1.0),
        },
        2,
    );
    do_test(
        &CubicBezierSegment {
            from: point(0.2, 0.0),
            ctrl1: point(0.5, 3.0),
            ctrl2: point(0.5, -2.0),
            to: point(0.8, 1.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(2.5, 0.5),
            ctrl2: point(-1.5, 0.5),
            to: point(1.0, 0.0),
        },
        9,
    );

    // (A previous version of the code was returning two practically identical
    // intersection points here.)
    do_test(
        &CubicBezierSegment {
            from: point(718133.1363092018, 673674.987999388),
            ctrl1: point(-53014.13135835016, 286988.87959900266),
            ctrl2: point(-900630.1880107201, -7527.6889376943),
            to: point(417822.48349384824, -149039.14932848653),
        },
        &CubicBezierSegment {
            from: point(924715.3309247112, 719414.5221912428),
            ctrl1: point(965365.9679664494, -563421.3040676294),
            ctrl2: point(273552.85484064696, 643090.0890117711),
            to: point(-113963.134524995, 732017.9466050486),
        },
        1,
    );

    // On these curves the algorithm runs to a state at which the new clipped domain1 becomes a
    // point even though t_min_clip < t_max_clip (because domain1 was small enough to begin with
    // relative to the small distance between t_min_clip and t_max_clip), and the new curve1 is not
    // a point (it's split off the old curve1 using t_min_clip < t_max_clip).
    do_test(
        &CubicBezierSegment {
            from: point(423394.5967598548, -91342.7434613118),
            ctrl1: point(333212.450870987, 225564.45711810607),
            ctrl2: point(668108.668469816, -626100.8367380127),
            to: point(-481885.0610437216, 893767.5320803947),
        },
        &CubicBezierSegment {
            from: point(-484505.2601961801, -222621.44229855016),
            ctrl1: point(22432.829984141514, -944727.7102144773),
            ctrl2: point(-433294.66549074976, -168018.60431004688),
            to: point(567688.5977972192, 13975.09633399453),
        },
        3,
    );
}

#[test]
fn test_cubic_control_point_touching() {
    // After splitting the curve2 loop in half, curve1.ctrl1 (and only that
    // point) touches the curve2 fat line - make sure we don't accept that as an
    // intersection. [We're really only interested in the right half of the loop - the rest of the
    // loop is there just to get past an initial fast_bounding_rect check.]
    do_test(
        &CubicBezierSegment {
            from: point(-1.0, 0.0),
            ctrl1: point(0.0, 0.0),
            ctrl2: point(-1.0, -0.1),
            to: point(-1.0, -0.1),
        },
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(5.0, -5.0),
            ctrl2: point(-5.0, -5.0),
            to: point(0.0, 0.0),
        },
        0,
    );
}

#[test]
fn test_cubic_self_intersections() {
    // Two self-intersecting curves intersecting at their self-intersections (the origin).
    do_test(
        &CubicBezierSegment {
            from: point(-10.0, -13.636363636363636),
            ctrl1: point(15.0, 11.363636363636363),
            ctrl2: point(-15.0, 11.363636363636363),
            to: point(10.0, -13.636363636363636),
        },
        &CubicBezierSegment {
            from: point(13.636363636363636, -10.0),
            ctrl1: point(-11.363636363636363, 15.0),
            ctrl2: point(-11.363636363636363, -15.0),
            to: point(13.636363636363636, 10.0),
        },
        4,
    );
}

#[test]
fn test_cubic_loops() {
    // This gets up to a recursion count of 53 trying to find (0.0, 0.0) and (1.0, 1.0) (which
    // aren't actually needed) - with the curves in the opposite order it gets up to 81!
    do_test(
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(-10.0, 10.0),
            ctrl2: point(10.0, 10.0),
            to: point(0.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(-1.0, 1.0),
            ctrl2: point(1.0, 1.0),
            to: point(0.0, 0.0),
        },
        0,
    );

    do_test(
        &CubicBezierSegment {
            from: point(0.0f32, 0.0),
            ctrl1: point(-100.0, 0.0),
            ctrl2: point(-500.0, 500.0),
            to: point(0.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(-800.0, 100.0),
            ctrl2: point(500.0, 500.0),
            to: point(0.0, 0.0),
        },
        3,
    );
}

#[test]
fn test_cubic_line_curve_intersections() {
    do_test(
        &CubicBezierSegment {
            /* line */
            from: point(1.0, 2.0),
            ctrl1: point(20.0, 1.0),
            ctrl2: point(1.0, 2.0),
            to: point(20.0, 1.0),
        },
        &CubicBezierSegment {
            from: point(1.0, 0.0),
            ctrl1: point(1.0, 5.0),
            ctrl2: point(20.0, 25.0),
            to: point(20.0, 0.0),
        },
        2,
    );

    do_test(
        &CubicBezierSegment {
            /* line */
            from: point(0.0f32, 0.0),
            ctrl1: point(-10.0, 0.0),
            ctrl2: point(20.0, 0.0),
            to: point(10.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(-1.0, -1.0),
            ctrl1: point(0.0, 4.0),
            ctrl2: point(10.0, -4.0),
            to: point(11.0, 1.0),
        },
        5,
    );

    do_test(
        &CubicBezierSegment {
            from: point(-1.0, -2.0),
            ctrl1: point(-1.0, 8.0),
            ctrl2: point(1.0, -8.0),
            to: point(1.0, 2.0),
        },
        &CubicBezierSegment {
            /* line */
            from: point(-10.0, -10.0),
            ctrl1: point(20.0, 20.0),
            ctrl2: point(-20.0, -20.0),
            to: point(10.0, 10.0),
        },
        9,
    );
}

#[test]
fn test_cubic_line_line_intersections() {
    do_test(
        &CubicBezierSegment {
            from: point(-10.0, -10.0),
            ctrl1: point(20.0, 20.0),
            ctrl2: point(-20.0, -20.0),
            to: point(10.0, 10.0),
        },
        &CubicBezierSegment {
            from: point(-10.0, 10.0),
            ctrl1: point(20.0, -20.0),
            ctrl2: point(-20.0, 20.0),
            to: point(10.0, -10.0),
        },
        9,
    );

    // Overlapping line segments should return 0 intersections.
    do_test(
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(0.0, 0.0),
            ctrl2: point(10.0, 0.0),
            to: point(10.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(5.0, 0.0),
            ctrl1: point(5.0, 0.0),
            ctrl2: point(15.0, 0.0),
            to: point(15.0, 0.0),
        },
        0,
    );
}

#[test]
// (This test used to fail on a previous version of the algorithm by returning an intersection close
// to (1.0, 0.0), but not close enough to consider it the same as (1.0, 0.0) - the curves are quite
// close at that endpoint.)
fn test_cubic_similar_loops() {
    do_test(
        &CubicBezierSegment {
            from: point(-0.281604145719379, -0.3129629924180608),
            ctrl1: point(-0.04393998118946163, 0.13714701102906668),
            ctrl2: point(0.4472584256288119, 0.2876115686206546),
            to: point(-0.281604145719379, -0.3129629924180608),
        },
        &CubicBezierSegment {
            from: point(-0.281604145719379, -0.3129629924180608),
            ctrl1: point(-0.1560415754252551, -0.22924729391648402),
            ctrl2: point(-0.9224550447067958, 0.19110227764357646),
            to: point(-0.281604145719379, -0.3129629924180608),
        },
        2,
    );
}

#[test]
// (A previous version of the algorithm returned an intersection close to (0.5, 0.5), but not close
// enough to be considered the same as (0.5, 0.5).)
fn test_cubic_no_duplicated_root() {
    do_test(
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(-10.0, 1.0),
            ctrl2: point(10.0, 1.0),
            to: point(0.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 0.0),
            ctrl1: point(-1.0, 1.0),
            ctrl2: point(1.0, 1.0),
            to: point(0.0, 0.0),
        },
        1,
    );
}

#[test]
fn test_cubic_glancing_intersection() {
    use std::panic;
    // The f64 version currently fails on a very close fat line miss after 57 recursions.
    let result = panic::catch_unwind(|| {
        do_test(
            &CubicBezierSegment {
                from: point(0.0, 0.0),
                ctrl1: point(0.0, 8.0),
                ctrl2: point(10.0, 8.0),
                to: point(10.0, 0.0),
            },
            &CubicBezierSegment {
                from: point(0.0, 12.0),
                ctrl1: point(0.0, 4.0),
                ctrl2: point(10.0, 4.0),
                to: point(10.0, 12.0),
            },
            1,
        );
    });
    assert!(result.is_err());

    let result = panic::catch_unwind(|| {
        do_test(
            &CubicBezierSegment {
                from: point(0.0f32, 0.0),
                ctrl1: point(0.0, 8.0),
                ctrl2: point(10.0, 8.0),
                to: point(10.0, 0.0),
            },
            &CubicBezierSegment {
                from: point(0.0, 12.0),
                ctrl1: point(0.0, 4.0),
                ctrl2: point(10.0, 4.0),
                to: point(10.0, 12.0),
            },
            1,
        );
    });
    assert!(result.is_err());
}

#[test]
fn test_cubic_duplicated_intersections() {
    use std::panic;
    let result = panic::catch_unwind(|| {
        // This finds an extra intersection (0.49530116, 0.74361485) - the actual, also found, is
        // (0.49633604, 0.74361396). Their difference is (−0.00103488, 0.00000089) - we consider
        // the two to be the same if both difference values are < 1e-3.
        do_test(
            &CubicBezierSegment {
                from: point(-33307.36f32, -1804.0625),
                ctrl1: point(-59259.727, 70098.31),
                ctrl2: point(98661.78, 48235.703),
                to: point(28422.234, 31845.219),
            },
            &CubicBezierSegment {
                from: point(-21501.133, 51935.344),
                ctrl1: point(-95301.96, 95031.45),
                ctrl2: point(-25882.242, -12896.75),
                to: point(94618.97, 94288.66),
            },
            2,
        );
    });
    assert!(result.is_err());
}

#[test]
fn test_cubic_endpoint_not_an_intersection() {
    // f32 curves seem to be somewhat prone to picking up not-an-intersections where an endpoint of
    // one curve is close to and points into the interior of the other curve, and both curves are
    // "mostly linear" on some level.
    use std::panic;
    let result = panic::catch_unwind(|| {
        do_test(
            &CubicBezierSegment {
                from: point(76868.875f32, 47679.28),
                ctrl1: point(65326.86, 856.21094),
                ctrl2: point(-85621.64, -80823.375),
                to: point(-56517.53, 28062.227),
            },
            &CubicBezierSegment {
                from: point(-67977.72, 77673.53),
                ctrl1: point(-59829.57, -41917.87),
                ctrl2: point(57.4375, 52822.97),
                to: point(51075.86, 85772.84),
            },
            0,
        );
    });
    assert!(result.is_err());
}

#[test]
// The endpoints of curve2 intersect the interior of curve1.
fn test_cubic_interior_endpoint() {
    do_test(
        &CubicBezierSegment {
            // Has its apex at 6.0.
            from: point(-5.0, 0.0),
            ctrl1: point(-5.0, 8.0),
            ctrl2: point(5.0, 8.0),
            to: point(5.0, 0.0),
        },
        &CubicBezierSegment {
            from: point(0.0, 6.0),
            ctrl1: point(-5.0, 0.0),
            ctrl2: point(5.0, 0.0),
            to: point(0.0, 6.0),
        },
        2,
    );
}

#[test]
fn test_cubic_point_curve_intersections() {
    let epsilon = 1e-5;
    {
        let curve1 =
            CubicBezierSegment {
                from: point(0.0, 0.0),
                ctrl1: point(0.0, 1.0),
                ctrl2: point(0.0, 1.0),
                to: point(1.0, 1.0),
            };
        let sample_t = 0.123456789;
        let pt = curve1.sample(sample_t);
        let curve2 =
            CubicBezierSegment {
                from: pt,
                ctrl1: pt,
                ctrl2: pt,
                to: pt,
            };
        let intersections = cubic_bezier_intersections_t(&curve1, &curve2);
        assert_eq!(intersections.len(), 1);
        let intersection_t = intersections[0].0;
        assert!(f64::abs(intersection_t - sample_t) < epsilon);
    }
    {
        let curve1 =
            CubicBezierSegment {
                from: point(-10.0, -13.636363636363636),
                ctrl1: point(15.0, 11.363636363636363),
                ctrl2: point(-15.0, 11.363636363636363),
                to: point(10.0, -13.636363636363636),
            };
        // curve1 has a self intersection at the following parameter values:
        let parameter1 = 0.7611164839335472;
        let parameter2 = 0.23888351606645375;
        let pt = curve1.sample(parameter1);
        let curve2 =
            CubicBezierSegment {
                from: pt,
                ctrl1: pt,
                ctrl2: pt,
                to: pt,
            };
        let intersections = cubic_bezier_intersections_t(&curve1, &curve2);
        assert_eq!(intersections.len(), 2);
        let intersection_t1 = intersections[0].0;
        let intersection_t2 = intersections[1].0;
        assert!(f64::abs(intersection_t1 - parameter1) < epsilon);
        assert!(f64::abs(intersection_t2 - parameter2) < epsilon);
    }
    {
        let epsilon = epsilon as f32;
        let curve1 =
            CubicBezierSegment {
                from: point(0.0f32, 0.0),
                ctrl1: point(50.0, 50.0),
                ctrl2: point(-50.0, -50.0),
                to: point(10.0, 10.0),
            };
        // curve1 is a line that passes through (5.0, 5.0) three times:
        let parameter1 = 0.96984464;
        let parameter2 = 0.037427425;
        let parameter3 = 0.44434106;
        let pt = curve1.sample(parameter1);
        let curve2 =
            CubicBezierSegment {
                from: pt,
                ctrl1: pt,
                ctrl2: pt,
                to: pt,
            };
        let intersections = cubic_bezier_intersections_t(&curve1, &curve2);
        assert_eq!(intersections.len(), 3);
        let intersection_t1 = intersections[0].0;
        let intersection_t2 = intersections[1].0;
        let intersection_t3 = intersections[2].0;
        assert!(f32::abs(intersection_t1 - parameter1) < epsilon);
        assert!(f32::abs(intersection_t2 - parameter2) < epsilon);
        assert!(f32::abs(intersection_t3 - parameter3) < epsilon);
    }
}

#[test]
fn test_cubic_subcurve_intersections() {
    let curve1 = CubicBezierSegment {
        from: point(0.0, 0.0),
        ctrl1: point(0.0, 1.0),
        ctrl2: point(0.0, 1.0),
        to: point(1.0, 1.0),
    };
    let curve2 = curve1.split_range(0.25..0.75);
    // The algorithm will find as many intersections as you let it, basically - make sure we're
    // not allowing too many intersections to be added, and not crashing on out of resources.
    do_test(&curve1, &curve2, 9);
}

#[test]
fn test_cubic_result_distance() {
    // In a previous version this used to return an intersection pair (0.17933762, 0.23783168),
    // close to an actual intersection, where the sampled intersection points on respective curves
    // were at distance 160.08488. The point here is that the old extra intersection was the result
    // of an anomalous fat line calculation, in other words an actual error, not just a "not quite
    // computationally close enough" error.
    do_test(
        &CubicBezierSegment {
            from: point(5893.133f32, -51377.152),
            ctrl1: point(-94403.984, 37668.156),
            ctrl2: point(-58914.684, 30339.195),
            to: point(4895.875, 83473.3),
        },
        &CubicBezierSegment {
            from: point(-51523.734, 75047.05),
            ctrl1: point(-58162.76, -91093.875),
            ctrl2: point(82137.516, -59844.35),
            to: point(46856.406, 40479.64),
        },
        3,
    );
}