1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
//! Fast lexical integer-to-string conversion routines.

//  The following benchmarks were run on an "Intel(R) Core(TM) i7-6560U
//  CPU @ 2.20GHz" CPU, on Fedora 28, Linux kernel version 4.18.16-200
//  (x86-64), using the lexical formatter, `itoa::write()` or `x.to_string()`,
//  avoiding any inefficiencies in Rust string parsing for `format!(...)`
//  or `write!()` macros. The code was compiled with LTO and at an optimization
//  level of 3.
//
//  The benchmarks with `std` were compiled using "rustc 1.29.2 (17a9dc751
//  2018-10-05", and the `no_std` benchmarks were compiled using "rustc
//  1.31.0-nightly (46880f41b 2018-10-15)".
//
//  The benchmark code may be found `benches/itoa.rs`.
//
//  # Benchmarks
//
//  | Type  |  lexical (ns/iter) | to_string (ns/iter)   | Relative Increase |
//  |:-----:|:------------------:|:---------------------:|:-----------------:|
//  | u8    | 118,355            | 580,365               | 4.90x             |
//  | u16   | 130,145            | 559,563               | 4.30x             |
//  | u32   | 168,984            | 572,838               | 3.39x             |
//  | u64   | 307,052            | 706,427               | 2.30x             |
//  | i8    | 149,634            | 788,111               | 5.27x             |
//  | i16   | 169,105            | 810,891               | 4.80x             |
//  | i32   | 218,203            | 868,149               | 3.98x             |
//  | i64   | 323,406            | 923,783               | 2.86x             |
//
//  # Raw Benchmarks
//
//  ```text
//  test itoa_i8_itoa       ... bench:     148,488 ns/iter (+/- 5,138)
//  test itoa_i8_lexical    ... bench:     149,634 ns/iter (+/- 5,080)
//  test itoa_i8_to_string  ... bench:     788,111 ns/iter (+/- 22,323)
//  test itoa_i16_itoa      ... bench:     165,307 ns/iter (+/- 6,178)
//  test itoa_i16_lexical   ... bench:     169,105 ns/iter (+/- 5,531)
//  test itoa_i16_to_string ... bench:     810,891 ns/iter (+/- 31,014)
//  test itoa_i32_itoa      ... bench:     220,269 ns/iter (+/- 11,670)
//  test itoa_i32_lexical   ... bench:     218,203 ns/iter (+/- 7,772)
//  test itoa_i32_to_string ... bench:     868,149 ns/iter (+/- 50,224)
//  test itoa_i64_itoa      ... bench:     275,732 ns/iter (+/- 10,747)
//  test itoa_i64_lexical   ... bench:     323,406 ns/iter (+/- 9,937)
//  test itoa_i64_to_string ... bench:     923,783 ns/iter (+/- 21,573)
//  test itoa_u8_itoa       ... bench:     119,045 ns/iter (+/- 6,135)
//  test itoa_u8_lexical    ... bench:     118,355 ns/iter (+/- 5,028)
//  test itoa_u8_to_string  ... bench:     580,365 ns/iter (+/- 24,363)
//  test itoa_u16_itoa      ... bench:     109,700 ns/iter (+/- 4,134)
//  test itoa_u16_lexical   ... bench:     130,145 ns/iter (+/- 2,553)
//  test itoa_u16_to_string ... bench:     559,563 ns/iter (+/- 18,978)
//  test itoa_u32_itoa      ... bench:     154,892 ns/iter (+/- 5,122)
//  test itoa_u32_lexical   ... bench:     168,984 ns/iter (+/- 5,195)
//  test itoa_u32_to_string ... bench:     572,838 ns/iter (+/- 15,236)
//  test itoa_u64_itoa      ... bench:     284,219 ns/iter (+/- 9,696)
//  test itoa_u64_lexical   ... bench:     307,052 ns/iter (+/- 11,039)
//  test itoa_u64_to_string ... bench:     706,427 ns/iter (+/- 32,680)
//  ```

// Code the generate the benchmark plot:
//  import numpy as np
//  import pandas as pd
//  import matplotlib.pyplot as plt
//  plt.style.use('ggplot')
//  lexical = np.array([118355, 130145, 168984, 307052, 149634, 169105, 218203, 323406]) / 1e6
//  itoa = np.array([119045, 109700, 154892, 284219, 148488, 165307, 220269, 275732]) / 1e6
//  rustcore = np.array([580365, 559563, 572838, 706427, 788111, 810891, 868149, 923783]) / 1e6
//  index = ["u8", "u16", "u32", "u64", "i8", "i16", "i32", "i64"]
//  df = pd.DataFrame({'lexical': lexical, 'itoa': itoa, 'rustcore': rustcore}, index = index, columns=['lexical', 'itoa', 'rustcore'])
//  ax = df.plot.bar(rot=0, figsize=(16, 8), fontsize=14, color=['#E24A33', '#988ED5', '#348ABD'])
//  ax.set_ylabel("ms/iter")
//  ax.figure.tight_layout()
//  ax.legend(loc=2, prop={'size': 14})
//  plt.show()

use util::*;

// OPTIMIZED

/// Optimized implementation for radix-N numbers.
///
/// Use a macro to allow for u32 or u64 to be used (u32 is generally faster).
///
/// `value` must be non-negative and mutable.
#[cfg(feature = "table")]
#[inline]
fn optimized<T>(mut value: T, radix: T, table: &[u8], buffer: &mut [u8])
    -> usize
    where T: UnsignedInteger
{
    // Use power-reduction to minimize the number of operations.
    // Idea taken from "3 Optimization Tips for C++".
    let radix2 = radix * radix;
    let radix4 = radix2 * radix2;

    // Decode 4-digits at a time
    let mut iter = buffer.iter_mut().rev();
    while value >= radix4 {
        let rem = value % radix4;
        value /= radix4;
        let r1 = (T::TWO * (rem / radix2)).as_usize();
        let r2 = (T::TWO * (rem % radix2)).as_usize();

        // This is always safe, since the table is 2*radix^2, and
        // r1 and r2 must be in the range [0, 2*radix^2-1), since the maximum
        // value of rem is `radix4-1`, which must have a div and rem
        // in the range [0, radix^2-1).
        *iter.next().unwrap() = index!(table[r2+1]);
        *iter.next().unwrap() = index!(table[r2]);
        *iter.next().unwrap() = index!(table[r1+1]);
        *iter.next().unwrap() = index!(table[r1]);
    }

    // Decode 2 digits at a time.
    while value >= radix2 {
        let rem = (T::TWO * (value % radix2)).as_usize();
        value /= radix2;

        // This is always safe, since the table is 2*radix^2, and
        // rem must be in the range [0, 2*radix^2-1).
        *iter.next().unwrap() = index!(table[rem+1]);
        *iter.next().unwrap() = index!(table[rem]);
    }

    // Decode last 2 digits.
    if value < radix {
        // This is always safe, since value < radix, so it must be < 36.
        // Digit must be <= 36.
        *iter.next().unwrap() = digit_to_char(value);
    } else {
        let rem = (T::TWO * value).as_usize();
        // This is always safe, since the table is 2*radix^2, and the value
        // must <= radix^2, so rem must be in the range [0, 2*radix^2-1).
        *iter.next().unwrap() = index!(table[rem+1]);
        *iter.next().unwrap() = index!(table[rem]);
    }

    iter.count()
}

// NAIVE

/// Naive implementation for radix-N numbers.
///
/// Use a macro to allow for u32 or u64 to be used (u32 is generally faster).
///
/// `value` must be non-negative and mutable.
#[cfg(not(feature = "table"))]
#[inline]
fn naive<T>(mut value: T, radix: T, buffer: &mut [u8])
    -> usize
    where T: UnsignedInteger
{
    // Decode all but last digit, 1 at a time.
    let mut iter = buffer.iter_mut().rev();
    while value >= radix {
        let rem = (value % radix).as_usize();
        value /= radix;

        // This is always safe, since rem must be [0, radix).
        *iter.next().unwrap() = digit_to_char(rem);
    }

    // Decode last digit.
    let rem = (value % radix).as_usize();
    // This is always safe, since rem must be [0, radix).
    *iter.next().unwrap() = digit_to_char(rem);

    iter.count()
}

/// Forward the correct arguments to the implementation.
///
/// Use a macro to allow for u32 or u64 to be used (u32 is generally faster).
///
/// `value` must be non-negative and mutable.
#[inline]
pub(crate) fn forward<T>(value: T, radix: u32, bytes: &mut [u8])
    -> usize
    where T: UnsignedInteger
{
    // Check simple use-cases
    if value == T::ZERO {
        // We know this is safe, because we confirmed the buffer is >= 2
        // in total (since we also handled the sign by here).
        index_mut!(bytes[0] = b'0');
        return 1;
    }

    // Create a temporary buffer, and copy into it.
    // Way faster than reversing a buffer in-place.
    debug_assert_radix!(radix);
    let mut buffer: [u8; BUFFER_SIZE] = explicit_uninitialized();

    let count = {
        #[cfg(not(feature = "table"))] {
            naive(value, as_cast(radix), &mut buffer)
        }

        #[cfg(all(not(feature = "radix"), feature = "table"))] {
            optimized(value, as_cast(radix), &DIGIT_TO_BASE10_SQUARED, &mut buffer)
        }

        #[cfg(all(feature = "radix", feature = "table"))]{
            let table: &[u8] = match radix {
                2   => &DIGIT_TO_BASE2_SQUARED,
                3   => &DIGIT_TO_BASE3_SQUARED,
                4   => &DIGIT_TO_BASE4_SQUARED,
                5   => &DIGIT_TO_BASE5_SQUARED,
                6   => &DIGIT_TO_BASE6_SQUARED,
                7   => &DIGIT_TO_BASE7_SQUARED,
                8   => &DIGIT_TO_BASE8_SQUARED,
                9   => &DIGIT_TO_BASE9_SQUARED,
                10  => &DIGIT_TO_BASE10_SQUARED,
                11  => &DIGIT_TO_BASE11_SQUARED,
                12  => &DIGIT_TO_BASE12_SQUARED,
                13  => &DIGIT_TO_BASE13_SQUARED,
                14  => &DIGIT_TO_BASE14_SQUARED,
                15  => &DIGIT_TO_BASE15_SQUARED,
                16  => &DIGIT_TO_BASE16_SQUARED,
                17  => &DIGIT_TO_BASE17_SQUARED,
                18  => &DIGIT_TO_BASE18_SQUARED,
                19  => &DIGIT_TO_BASE19_SQUARED,
                20  => &DIGIT_TO_BASE20_SQUARED,
                21  => &DIGIT_TO_BASE21_SQUARED,
                22  => &DIGIT_TO_BASE22_SQUARED,
                23  => &DIGIT_TO_BASE23_SQUARED,
                24  => &DIGIT_TO_BASE24_SQUARED,
                25  => &DIGIT_TO_BASE25_SQUARED,
                26  => &DIGIT_TO_BASE26_SQUARED,
                27  => &DIGIT_TO_BASE27_SQUARED,
                28  => &DIGIT_TO_BASE28_SQUARED,
                29  => &DIGIT_TO_BASE29_SQUARED,
                30  => &DIGIT_TO_BASE30_SQUARED,
                31  => &DIGIT_TO_BASE31_SQUARED,
                32  => &DIGIT_TO_BASE32_SQUARED,
                33  => &DIGIT_TO_BASE33_SQUARED,
                34  => &DIGIT_TO_BASE34_SQUARED,
                35  => &DIGIT_TO_BASE35_SQUARED,
                36  => &DIGIT_TO_BASE36_SQUARED,
                _   => unreachable!(),
            };
            optimized(value, as_cast(radix), table, &mut buffer)
        }
    };

    // We know that count <= buffer.len(), so we can safely extract a subslice
    // of buffer. This is because count is generated from `buffer.iter_mut().count()`,
    // after writing a certain number of elements, so it must be <= buffer.len().
    debug_assert!(count <= buffer.len());
    copy_to_dst(bytes, &index!(buffer[count..]))
}

/// Sanitizer for an unsigned number-to-string implementation.
#[inline]
pub(crate) fn unsigned<Value, UWide>(value: Value, radix: u32, bytes: &mut [u8])
    -> usize
    where Value: UnsignedInteger,
          UWide: UnsignedInteger
{
    // Invoke forwarder
    let v: UWide = as_cast(value);
    forward(v, radix, bytes)
}

/// Sanitizer for an signed number-to-string implementation.
#[inline]
pub(crate) fn signed<Value, UWide, IWide>(value: Value, radix: u32, bytes: &mut [u8])
    -> usize
    where Value: SignedInteger,
          UWide: UnsignedInteger,
          IWide: SignedInteger
{
    // Handle negative numbers, use an unsigned type to avoid overflow.
    // Use a wrapping neg to allow overflow.
    // These routines wrap on one condition, where the input number is equal
    // to the minimum possible value of that type (for example, -128 for i8).
    // In this case, and this case only, the value wraps to itself with
    // `x.wrapping_neg()`, so `-128i8.wrapping_neg() == -128i8` in two's
    // complement (the only true integer representation). Conversion of
    // this wrapped value to an unsigned integer of the same size with
    // effectively negates the value, for example, `-128i8 as u8 == 128u8`.
    // Due to type widening, this wrap only occurs for `i64::min_value()`,
    // and since it is converted to `u64`, this algorithm is correct
    // for all numerical input values, since Rust guarantees two's
    // complement representation for signed integers.
    let v: UWide;
    if value < Value::ZERO {
        let wide: IWide = as_cast(value);
        v = as_cast(wide.wrapping_neg());
        // We know this is safe, because we confirmed the buffer is >= 1.
        index_mut!(bytes[0] = b'-');
        forward(v, radix, &mut index_mut!(bytes[1..])) + 1
    } else {
        v = as_cast(value);
        forward(v, radix, bytes)
    }
}

// UNSAFE API

/// Expand the generic unsigned itoa function for specified types.
macro_rules! wrap_unsigned {
    ($name:ident, $t:ty, $uwide:ty) => (
        /// Serialize unsigned integer and return bytes written to.
        #[inline]
        fn $name<'a>(value: $t, radix: u8, bytes: &'a mut [u8])
            -> usize
        {
            unsigned::<$t, $uwide>(value, radix.into(), bytes)
        }
    )
}

wrap_unsigned!(u8toa_impl, u8, u32);
wrap_unsigned!(u16toa_impl, u16, u32);
wrap_unsigned!(u32toa_impl, u32, u32);
wrap_unsigned!(u64toa_impl, u64, u64);
wrap_unsigned!(usizetoa_impl, usize, usize);

#[cfg(has_i128)]
wrap_unsigned!(u128toa_impl, u128, u128);

/// Expand the generic signed itoa function for specified types.
macro_rules! wrap_signed {
    ($name:ident, $t:ty, $uwide:ty, $iwide:ty) => (
        /// Serialize signed integer and return bytes written to.
        #[inline]
        fn $name<'a>(value: $t, radix: u8, bytes: &'a mut [u8])
            -> usize
        {
            signed::<$t, $uwide, $iwide>(value, radix.into(), bytes)
        }
    )
}

wrap_signed!(i8toa_impl, i8, u32, i32);
wrap_signed!(i16toa_impl, i16, u32, i32);
wrap_signed!(i32toa_impl, i32, u32, i32);
wrap_signed!(i64toa_impl, i64, u64, i64);
wrap_signed!(isizetoa_impl, isize, usize, isize);

#[cfg(has_i128)]
wrap_signed!(i128toa_impl, i128, u128, i128);

// LOW-LEVEL API
// -------------

// RANGE API (FFI)
generate_to_range_api!(u8toa_range, u8toa_radix_range, u8, u8toa_impl, MAX_U8_SIZE);
generate_to_range_api!(u16toa_range, u16toa_radix_range, u16, u16toa_impl, MAX_U16_SIZE);
generate_to_range_api!(u32toa_range, u32toa_radix_range, u32, u32toa_impl, MAX_U32_SIZE);
generate_to_range_api!(u64toa_range, u64toa_radix_range, u64, u64toa_impl, MAX_U64_SIZE);
generate_to_range_api!(usizetoa_range, usizetoa_radix_range, usize, usizetoa_impl, MAX_USIZE_SIZE);
generate_to_range_api!(i8toa_range, i8toa_radix_range, i8, i8toa_impl, MAX_I8_SIZE);
generate_to_range_api!(i16toa_range, i16toa_radix_range, i16, i16toa_impl, MAX_I16_SIZE);
generate_to_range_api!(i32toa_range, i32toa_radix_range, i32, i32toa_impl, MAX_I32_SIZE);
generate_to_range_api!(i64toa_range, i64toa_radix_range, i64, i64toa_impl, MAX_I64_SIZE);
generate_to_range_api!(isizetoa_range, isizetoa_radix_range, isize, isizetoa_impl, MAX_ISIZE_SIZE);

#[cfg(has_i128)] generate_to_range_api!(u128toa_range, u128toa_radix_range, u128, u128toa_impl, MAX_U128_SIZE);
#[cfg(has_i128)] generate_to_range_api!(i128toa_range, i128toa_radix_range, i128, i128toa_impl, MAX_I128_SIZE);

// SLICE API
generate_to_slice_api!(u8toa_slice, u8toa_radix_slice, u8, u8toa_impl, MAX_U8_SIZE);
generate_to_slice_api!(u16toa_slice, u16toa_radix_slice, u16, u16toa_impl, MAX_U16_SIZE);
generate_to_slice_api!(u32toa_slice, u32toa_radix_slice, u32, u32toa_impl, MAX_U32_SIZE);
generate_to_slice_api!(u64toa_slice, u64toa_radix_slice, u64, u64toa_impl, MAX_U64_SIZE);
generate_to_slice_api!(usizetoa_slice, usizetoa_radix_slice, usize, usizetoa_impl, MAX_USIZE_SIZE);
generate_to_slice_api!(i8toa_slice, i8toa_radix_slice, i8, i8toa_impl, MAX_I8_SIZE);
generate_to_slice_api!(i16toa_slice, i16toa_radix_slice, i16, i16toa_impl, MAX_I16_SIZE);
generate_to_slice_api!(i32toa_slice, i32toa_radix_slice, i32, i32toa_impl, MAX_I32_SIZE);
generate_to_slice_api!(i64toa_slice, i64toa_radix_slice, i64, i64toa_impl, MAX_I64_SIZE);
generate_to_slice_api!(isizetoa_slice, isizetoa_radix_slice, isize, isizetoa_impl, MAX_ISIZE_SIZE);

#[cfg(has_i128)] generate_to_slice_api!(u128toa_slice, u128toa_radix_slice, u128, u128toa_impl, MAX_U128_SIZE);
#[cfg(has_i128)] generate_to_slice_api!(i128toa_slice, i128toa_radix_slice, i128, i128toa_impl, MAX_I128_SIZE);

// TESTS
// -----

#[cfg(test)]
mod tests {
    use atoi::*;
    use util::test::*;
    use super::*;

    #[test]
    fn u8toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", u8toa_slice(0, &mut buffer));
        assert_eq!(b"1", u8toa_slice(1, &mut buffer));
        assert_eq!(b"127", u8toa_slice(127, &mut buffer));
        assert_eq!(b"128", u8toa_slice(128, &mut buffer));
        assert_eq!(b"255", u8toa_slice(255, &mut buffer));
        assert_eq!(b"255", u8toa_slice(-1i8 as u8, &mut buffer));
    }

    #[test]
    fn i8toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", i8toa_slice(0, &mut buffer));
        assert_eq!(b"1", i8toa_slice(1, &mut buffer));
        assert_eq!(b"127", i8toa_slice(127, &mut buffer));
        assert_eq!(b"-128", i8toa_slice(128u8 as i8, &mut buffer));
        assert_eq!(b"-1", i8toa_slice(255u8 as i8, &mut buffer));
        assert_eq!(b"-1", i8toa_slice(-1, &mut buffer));
    }

    #[test]
    fn u16toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", u16toa_slice(0, &mut buffer));
        assert_eq!(b"1", u16toa_slice(1, &mut buffer));
        assert_eq!(b"32767", u16toa_slice(32767, &mut buffer));
        assert_eq!(b"32768", u16toa_slice(32768, &mut buffer));
        assert_eq!(b"65535", u16toa_slice(65535, &mut buffer));
        assert_eq!(b"65535", u16toa_slice(-1i16 as u16, &mut buffer));
    }

    #[test]
    fn i16toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", i16toa_slice(0, &mut buffer));
        assert_eq!(b"1", i16toa_slice(1, &mut buffer));
        assert_eq!(b"32767", i16toa_slice(32767, &mut buffer));
        assert_eq!(b"-32768", i16toa_slice(32768u16 as i16, &mut buffer));
        assert_eq!(b"-1", i16toa_slice(65535u16 as i16, &mut buffer));
        assert_eq!(b"-1", i16toa_slice(-1, &mut buffer));
    }

    #[test]
    fn u32toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", u32toa_slice(0, &mut buffer));
        assert_eq!(b"1", u32toa_slice(1, &mut buffer));
        assert_eq!(b"2147483647", u32toa_slice(2147483647, &mut buffer));
        assert_eq!(b"2147483648", u32toa_slice(2147483648, &mut buffer));
        assert_eq!(b"4294967295", u32toa_slice(4294967295, &mut buffer));
        assert_eq!(b"4294967295", u32toa_slice(-1i32 as u32, &mut buffer));
    }

    #[test]
    fn i32toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", i32toa_slice(0, &mut buffer));
        assert_eq!(b"1", i32toa_slice(1, &mut buffer));
        assert_eq!(b"2147483647", i32toa_slice(2147483647, &mut buffer));
        assert_eq!(b"-2147483648", i32toa_slice(2147483648u32 as i32, &mut buffer));
        assert_eq!(b"-1", i32toa_slice(4294967295u32 as i32, &mut buffer));
        assert_eq!(b"-1", i32toa_slice(-1, &mut buffer));
    }

    #[test]
    fn u64toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", u64toa_slice(0, &mut buffer));
        assert_eq!(b"1", u64toa_slice(1, &mut buffer));
        assert_eq!(b"9223372036854775807", u64toa_slice(9223372036854775807, &mut buffer));
        assert_eq!(b"9223372036854775808", u64toa_slice(9223372036854775808, &mut buffer));
        assert_eq!(b"18446744073709551615", u64toa_slice(18446744073709551615, &mut buffer));
        assert_eq!(b"18446744073709551615", u64toa_slice(-1i64 as u64, &mut buffer));
    }

    #[test]
    fn i64toa_test() {
        let mut buffer = new_buffer();
        assert_eq!(b"0", i64toa_slice(0, &mut buffer));
        assert_eq!(b"1", i64toa_slice(1, &mut buffer));
        assert_eq!(b"9223372036854775807", i64toa_slice(9223372036854775807, &mut buffer));
        assert_eq!(b"-9223372036854775808", i64toa_slice(9223372036854775808u64 as i64, &mut buffer));
        assert_eq!(b"-1", i64toa_slice(18446744073709551615u64 as i64, &mut buffer));
        assert_eq!(b"-1", i64toa_slice(-1, &mut buffer));
    }

    #[cfg(feature = "radix")]
    #[test]
    fn basen_test() {
        let data = [
            (2, "100101"),
            (3, "1101"),
            (4, "211"),
            (5, "122"),
            (6, "101"),
            (7, "52"),
            (8, "45"),
            (9, "41"),
            (10, "37"),
            (11, "34"),
            (12, "31"),
            (13, "2B"),
            (14, "29"),
            (15, "27"),
            (16, "25"),
            (17, "23"),
            (18, "21"),
            (19, "1I"),
            (20, "1H"),
            (21, "1G"),
            (22, "1F"),
            (23, "1E"),
            (24, "1D"),
            (25, "1C"),
            (26, "1B"),
            (27, "1A"),
            (28, "19"),
            (29, "18"),
            (30, "17"),
            (31, "16"),
            (32, "15"),
            (33, "14"),
            (34, "13"),
            (35, "12"),
            (36, "11"),
        ];

        let mut buffer = new_buffer();
        for (base, expected) in data.iter() {
            assert_eq!(expected.as_bytes(), i8toa_radix_slice(37, *base, &mut buffer));
        }
    }

    quickcheck! {
        fn u8_quickcheck(i: u8) -> bool {
            let mut buffer = new_buffer();
            i == atou8_slice(u8toa_slice(i, &mut buffer))
        }

        fn u16_quickcheck(i: u16) -> bool {
            let mut buffer = new_buffer();
            i == atou16_slice(u16toa_slice(i, &mut buffer))
        }

        fn u32_quickcheck(i: u32) -> bool {
            let mut buffer = new_buffer();
            i == atou32_slice(u32toa_slice(i, &mut buffer))
        }

        fn u64_quickcheck(i: u64) -> bool {
            let mut buffer = new_buffer();
            i == atou64_slice(u64toa_slice(i, &mut buffer))
        }

        fn usize_quickcheck(i: usize) -> bool {
            let mut buffer = new_buffer();
            i == atousize_slice(usizetoa_slice(i, &mut buffer))
        }

        fn i8_quickcheck(i: i8) -> bool {
            let mut buffer = new_buffer();
            i == atoi8_slice(i8toa_slice(i, &mut buffer))
        }

        fn i16_quickcheck(i: i16) -> bool {
            let mut buffer = new_buffer();
            i == atoi16_slice(i16toa_slice(i, &mut buffer))
        }

        fn i32_quickcheck(i: i32) -> bool {
            let mut buffer = new_buffer();
            i == atoi32_slice(i32toa_slice(i, &mut buffer))
        }

        fn i64_quickcheck(i: i64) -> bool {
            let mut buffer = new_buffer();
            i == atoi64_slice(i64toa_slice(i, &mut buffer))
        }

        fn isize_quickcheck(i: isize) -> bool {
            let mut buffer = new_buffer();
            i == atoisize_slice(isizetoa_slice(i, &mut buffer))
        }
    }

    proptest! {
        #[test]
        fn u8_proptest(i in u8::min_value()..u8::max_value()) {
            let mut buffer = new_buffer();
            i == atou8_slice(u8toa_slice(i, &mut buffer))
        }

        #[test]
        fn i8_proptest(i in i8::min_value()..i8::max_value()) {
            let mut buffer = new_buffer();
            i == atoi8_slice(i8toa_slice(i, &mut buffer))
        }

        #[test]
        fn u16_proptest(i in u16::min_value()..u16::max_value()) {
            let mut buffer = new_buffer();
            i == atou16_slice(u16toa_slice(i, &mut buffer))
        }

        #[test]
        fn i16_proptest(i in i16::min_value()..i16::max_value()) {
            let mut buffer = new_buffer();
            i == atoi16_slice(i16toa_slice(i, &mut buffer))
        }

        #[test]
        fn u32_proptest(i in u32::min_value()..u32::max_value()) {
            let mut buffer = new_buffer();
            i == atou32_slice(u32toa_slice(i, &mut buffer))
        }

        #[test]
        fn i32_proptest(i in i32::min_value()..i32::max_value()) {
            let mut buffer = new_buffer();
            i == atoi32_slice(i32toa_slice(i, &mut buffer))
        }

        #[test]
        fn u64_proptest(i in u64::min_value()..u64::max_value()) {
            let mut buffer = new_buffer();
            i == atou64_slice(u64toa_slice(i, &mut buffer))
        }

        #[test]
        fn i64_proptest(i in i64::min_value()..i64::max_value()) {
            let mut buffer = new_buffer();
            i == atoi64_slice(i64toa_slice(i, &mut buffer))
        }

        #[test]
        fn u128_proptest(i in u128::min_value()..u128::max_value()) {
            let mut buffer = new_buffer();
            i == atou128_slice(u128toa_slice(i, &mut buffer))
        }

        #[test]
        fn i128_proptest(i in i128::min_value()..i128::max_value()) {
            let mut buffer = new_buffer();
            i == atoi128_slice(i128toa_slice(i, &mut buffer))
        }

        #[test]
        fn usize_proptest(i in usize::min_value()..usize::max_value()) {
            let mut buffer = new_buffer();
            i == atousize_slice(usizetoa_slice(i, &mut buffer))
        }

        #[test]
        fn isize_proptest(i in isize::min_value()..isize::max_value()) {
            let mut buffer = new_buffer();
            i == atoisize_slice(isizetoa_slice(i, &mut buffer))
        }
    }

    #[test]
    #[should_panic]
    fn i8toa_buffer_test() {
        let mut buffer = [b'0'; MAX_I8_SIZE-1];
        i8toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn i16toa_buffer_test() {
        let mut buffer = [b'0'; MAX_I16_SIZE-1];
        i16toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn i32toa_buffer_test() {
        let mut buffer = [b'0'; MAX_I32_SIZE-1];
        i32toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn i64toa_buffer_test() {
        let mut buffer = [b'0'; MAX_I64_SIZE-1];
        i64toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn i128toa_buffer_test() {
        let mut buffer = [b'0'; MAX_I128_SIZE-1];
        i128toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn isizetoa_buffer_test() {
        let mut buffer = [b'0'; MAX_ISIZE_SIZE-1];
        isizetoa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn u8toa_buffer_test() {
        let mut buffer = [b'0'; MAX_U8_SIZE-1];
        i8toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn u16toa_buffer_test() {
        let mut buffer = [b'0'; MAX_U16_SIZE-1];
        i16toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn u32toa_buffer_test() {
        let mut buffer = [b'0'; MAX_U32_SIZE-1];
        i32toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn u64toa_buffer_test() {
        let mut buffer = [b'0'; MAX_U64_SIZE-1];
        i64toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn u128toa_buffer_test() {
        let mut buffer = [b'0'; MAX_U128_SIZE-1];
        i128toa_slice(12, &mut buffer);
    }

    #[test]
    #[should_panic]
    fn usizetoa_buffer_test() {
        let mut buffer = [b'0'; MAX_USIZE_SIZE-1];
        usizetoa_slice(12, &mut buffer);
    }
}