1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! Algorithm to parse an exponent from a float string.

use atoi;
use util::*;

/// Parse the exponential portion from a float-string, if we have an `(e|^)[+-]?\d+`.
///
/// On overflow, just return a comically large exponent, since we don't
/// care. It will lead to infinity regardless, and doesn't affect whether
/// the type is representable.
///
/// Returns the exponent and a pointer to the current buffer position.
///
/// The float string must be non-special, non-zero, and positive.
#[inline]
pub(super) fn parse_exponent<'a>(radix: u32, bytes: &'a [u8])
    -> (i32, &'a [u8])
{
    // Force a check that the distance is >= 2, so we ensure there's something
    // after the exponent. This fixes a regression discovered via proptest.
    // Safety: bytes.len() >= 2.
    if bytes.len() >= 2 && case_insensitive_equal(index!(bytes[0]), exponent_notation_char(radix)) {
        // Use atoi_sign so we can handle overflow differently for +/- numbers.
        // We care whether the value is positive.
        // Use i32::max_value() since it's valid in 2s complement for
        // positive or negative numbers, and will trigger a short-circuit.
        // Safety: bytes.len() >= 2.
        let bytes = &index!(bytes[1..]);
        let cb = atoi::unchecked::<i32>;
        let (exponent, sign, len, truncated) = atoi::filter_sign::<i32, _>(radix, bytes, cb);
        let exponent = match truncated.is_some() {
            true  => match sign {
                Sign::Negative => -i32::max_value(),
                Sign::Positive => i32::max_value(),
            },
            false => exponent,
        };

        // Safety: atoi always returns a value <= bytes.len().
        (exponent, &index!(bytes[len..]))
    } else {
        (0, bytes)
    }
}

/// Calculate the scientific notation exponent without overflow.
///
/// For example, 0.1 would be -1, and 10 would be 1 in base 10.
#[inline]
#[cfg(feature = "correct")]
pub(super) fn scientific_exponent(exponent: i32, integer_digits: usize, fraction_start: usize)
    -> i32
{
    if integer_digits == 0 {
        let fraction_start = fraction_start.try_i32_or_max();
        exponent.saturating_sub(fraction_start).saturating_sub(1)
    } else {
        let integer_shift = (integer_digits - 1).try_i32_or_max();
        exponent.saturating_add(integer_shift)
    }
}

/// Calculate the mantissa exponent without overflow.
///
/// Remove the number of digits that contributed to the mantissa past
/// the dot, and add the number of truncated digits from the mantissa,
/// to calculate the scaling factor for the mantissa from a raw exponent.
#[inline]
#[cfg(feature = "correct")]
pub(super) fn mantissa_exponent(raw_exponent: i32, fraction_digits: usize, truncated: usize)
    -> i32
{
    if fraction_digits > truncated {
        raw_exponent.saturating_sub((fraction_digits - truncated).try_i32_or_max())
    } else {
        raw_exponent.saturating_add((truncated - fraction_digits).try_i32_or_max())
    }
}

/// Calculate the integral ceiling of the binary factor from a basen number.
#[inline]
#[cfg(feature = "correct")]
pub(super) fn integral_binary_factor(radix: u32)
    -> u32
{
    debug_assert_radix!(radix);

    #[cfg(not(feature = "radix"))] {
        4
    }

    #[cfg(feature = "radix")] {
        match radix.as_i32() {
            2  => 1,
            3  => 2,
            4  => 2,
            5  => 3,
            6  => 3,
            7  => 3,
            8  => 3,
            9  => 4,
            10 => 4,
            11 => 4,
            12 => 4,
            13 => 4,
            14 => 4,
            15 => 4,
            16 => 4,
            17 => 5,
            18 => 5,
            19 => 5,
            20 => 5,
            21 => 5,
            22 => 5,
            23 => 5,
            24 => 5,
            25 => 5,
            26 => 5,
            27 => 5,
            28 => 5,
            29 => 5,
            30 => 5,
            31 => 5,
            32 => 5,
            33 => 6,
            34 => 6,
            35 => 6,
            36 => 6,
            // Invalid radix
            _  => unreachable!(),
        }
    }
}

// TESTS
// -----

#[cfg(test)]
mod test {
    use super::*;

    fn check_parse_exponent(radix: u32, s: &str, tup: (i32, usize)) {
        let (value, slc) = parse_exponent(radix, s.as_bytes());
        assert_eq!(value, tup.0);
        assert_eq!(distance(s.as_ptr(), slc.as_ptr()), tup.1);
    }

    #[test]
    fn parse_exponent_test() {
        // empty
        check_parse_exponent(10, "", (0, 0));

        // invalid exponent character
        #[cfg(feature = "radix")]
        check_parse_exponent(28, "e1h", (0, 0));
        check_parse_exponent(10, "^45", (0, 0));

        // trailing characters
        check_parse_exponent(10, "e45 ", (45, 3));
        check_parse_exponent(10, "e45-", (45, 3));
        check_parse_exponent(10, "e45+", (45, 3));
        check_parse_exponent(10, "e45a", (45, 3));

        // positive
        check_parse_exponent(10, "e+45", (45, 4));

        // negative
        check_parse_exponent(10, "e-45", (-45, 4));

        // overflow
        check_parse_exponent(10, "e3000000000", (i32::max_value(), 11));
        check_parse_exponent(10, "e+3000000000", (i32::max_value(), 12));
        check_parse_exponent(10, "e-3000000000", (-i32::max_value(), 12));

        // lowercase
        check_parse_exponent(10, "e45", (45, 3));
        check_parse_exponent(10, "e+45", (45, 4));
        check_parse_exponent(10, "e-45", (-45, 4));
        check_parse_exponent(10, "e20", (20, 3));
        check_parse_exponent(10, "e+20", (20, 4));
        check_parse_exponent(10, "e-20", (-20, 4));

        // uppercase
        check_parse_exponent(10, "E45", (45, 3));
        check_parse_exponent(10, "E+45", (45, 4));
        check_parse_exponent(10, "E-45", (-45, 4));
        check_parse_exponent(10, "E20", (20, 3));
        check_parse_exponent(10, "E+20", (20, 4));
        check_parse_exponent(10, "E-20", (-20, 4));

        // overflow
        check_parse_exponent(10, "e10000000000", (i32::max_value(), 12));
        check_parse_exponent(10, "e+10000000000", (i32::max_value(), 13));
        check_parse_exponent(10, "e-10000000000", (-i32::max_value(), 13));

        #[cfg(feature = "radix")] {
            let data = [
                (2, "e101101"),
                (3, "e1200"),
                (4, "e231"),
                (5, "e140"),
                (6, "e113"),
                (7, "e63"),
                (8, "e55"),
                (9, "e50"),
                (10, "e45"),
                (11, "e41"),
                (12, "e39"),
                (13, "e36"),
                (14, "e33"),
                (15, "^30"),
                (16, "^2d"),
                (17, "^2b"),
                (18, "^29"),
                (19, "^27"),
                (20, "^25"),
                (21, "^23"),
                (22, "^21"),
                (23, "^1m"),
                (24, "^1l"),
                (25, "^1k"),
                (26, "^1j"),
                (27, "^1i"),
                (28, "^1h"),
                (29, "^1g"),
                (30, "^1f"),
                (31, "^1e"),
                (32, "^1d"),
                (33, "^1c"),
                (34, "^1b"),
                (35, "^1a"),
                (36, "^19")
            ];
            // basen
            for item in data.iter() {
                check_parse_exponent(item.0, item.1, (45, item.1.len()));
            }

            // >= base15
            check_parse_exponent(15, "^20", (30, 3));
            check_parse_exponent(15, "^+20", (30, 4));
            check_parse_exponent(15, "^-20", (-30, 4));
        }
    }

    #[cfg(feature = "correct")]
    #[test]
    fn scientific_exponent_test() {
        // 0 digits in the integer
        assert_eq!(scientific_exponent(0, 0, 5), -6);
        assert_eq!(scientific_exponent(10, 0, 5), 4);
        assert_eq!(scientific_exponent(-10, 0, 5), -16);

        // >0 digits in the integer
        assert_eq!(scientific_exponent(0, 1, 5), 0);
        assert_eq!(scientific_exponent(0, 2, 5), 1);
        assert_eq!(scientific_exponent(0, 2, 20), 1);
        assert_eq!(scientific_exponent(10, 2, 20), 11);
        assert_eq!(scientific_exponent(-10, 2, 20), -9);

        // Underflow
        assert_eq!(scientific_exponent(i32::min_value(), 0, 0), i32::min_value());
        assert_eq!(scientific_exponent(i32::min_value(), 0, 5), i32::min_value());

        // Overflow
        assert_eq!(scientific_exponent(i32::max_value(), 0, 0), i32::max_value()-1);
        assert_eq!(scientific_exponent(i32::max_value(), 5, 0), i32::max_value());
    }

    #[cfg(feature = "correct")]
    #[test]
    fn mantissa_exponent_test() {
        assert_eq!(mantissa_exponent(10, 5, 0), 5);
        assert_eq!(mantissa_exponent(0, 5, 0), -5);
        assert_eq!(mantissa_exponent(i32::max_value(), 5, 0), i32::max_value()-5);
        assert_eq!(mantissa_exponent(i32::max_value(), 0, 5), i32::max_value());
        assert_eq!(mantissa_exponent(i32::min_value(), 5, 0), i32::min_value());
        assert_eq!(mantissa_exponent(i32::min_value(), 0, 5), i32::min_value()+5);
    }

    #[cfg(all(feature = "correct", feature = "radix"))]
    #[test]
    fn integral_binary_factor_test() {
        const TABLE: [u32; 35] = [1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6];
        for (idx, base) in (2..37).enumerate() {
            assert_eq!(integral_binary_factor(base), TABLE[idx]);
        }
    }
}