1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//! An implementation of bigcomp for Rust.
//!
//! Compares the known string to theoretical digits generated on the
//! fly for `b+h`, where a string representation of a float is between
//! `b` and `b+u`, where `b+u` is 1 unit in the least-precision. Therefore,
//! the string must be close to `b+h`.
//!
//! Adapted from:
//!     https://www.exploringbinary.com/bigcomp-deciding-truncated-near-halfway-conversions/

use stackvector;
use lib::cmp;
use float::*;
use util::*;
use super::alias::*;
use super::correct::FloatSlice;
use super::exponent::*;
use super::math::*;

// SHARED

/// Calculate `b` from a a representation of `b` as a float.
#[inline]
pub(super) fn b<F: FloatType>(f: F) -> F::ExtendedFloat {
    f.into()
}

/// Calculate `b+h` from a a representation of `b` as a float.
#[inline]
pub(super) fn bh<F: FloatType>(f: F) -> F::ExtendedFloat {
    // None of these can overflow.
    let mut b = b(f);
    let mant = (b.mant() << 1) + as_cast(1);
    let exp = b.exp() - 1;
    b.set_mant(mant);
    b.set_exp(exp);
    b
}

// BIG INT

// Adjust the storage capacity for the underlying array.
cfg_if! {
if #[cfg(limb_width_64)] {
    type DataType = stackvector::StackVec<[Limb; 20]>;
} else {
    type DataType = stackvector::StackVec<[Limb; 36]>;
}}   // cfg_if

/// Storage for a big integer type.
#[derive(Clone, Default, PartialEq, Eq)]
#[cfg_attr(test, derive(Debug))]
pub struct Bigint {
    /// Internal storage for the Bigint, in little-endian order.
    ///
    /// Enough storage for up to 10^345, which is 2^1146, or more than
    /// the max for f64.
    data: DataType,
    /// It also makes sense to store an exponent, since this simplifies
    /// normalizing and powers of 2.
    exp: i32,
}

impl SharedOps for Bigint {
    type StorageType = DataType;

    #[inline]
    fn data<'a>(&'a self) -> &'a Self::StorageType {
        &self.data
    }

    #[inline]
    fn data_mut<'a>(&'a mut self) -> &'a mut Self::StorageType {
        &mut self.data
    }
}

impl SmallOps for Bigint {
    #[inline]
    fn imul_pow2(&mut self, n: u32) {
        // Increment exponent to simulate actual multiplication.
        self.exp += n.as_i32();
    }
}

impl LargeOps for Bigint {
}

// TO BIG INT

/// Simple overloads to allow conversions of extended floats to big integers.
pub trait ToBigInt<M: Mantissa> {
    fn to_bigint(&self) -> Bigint;
}

impl ToBigInt<u32> for ExtendedFloat<u32> {
    #[inline]
    fn to_bigint(&self) -> Bigint {
        let mut bigint = Bigint::from_u32(self.mant);
        bigint.exp = self.exp;
        bigint
    }
}

impl ToBigInt<u64> for ExtendedFloat<u64> {
    #[inline]
    fn to_bigint(&self) -> Bigint {
        let mut bigint = Bigint::from_u64(self.mant);
        bigint.exp = self.exp;
        bigint
    }
}

#[cfg(has_i128)]
impl ToBigInt<u128> for ExtendedFloat<u128> {
    #[inline]
    fn to_bigint(&self) -> Bigint {
        let mut bigint = Bigint::from_u128(self.mant);
        bigint.exp = self.exp;
        bigint
    }
}

// ROUNDING

/// Generate the theoretical float type for the rounding kind.
#[inline]
#[allow(unused_variables)]
pub(super) fn theoretical_float<F>(f: F, kind: RoundingKind)
    -> F::ExtendedFloat
    where F: FloatType
{
    #[cfg(not(feature = "rounding"))] {
        bh(f)
    }

    #[cfg(feature = "rounding")] {
        match is_nearest(kind) {
            // We need to check if we're close to halfway, so use `b+h`.
            true  => bh(f),
            // Just care if there are any truncated digits, use `b`.
            false => b(f),
        }
    }
}

/// Custom rounding for the ratio.
#[allow(unused_variables)]
pub(super) fn round_to_native<F>(f: F, order: cmp::Ordering, kind: RoundingKind)
    -> F
    where F: FloatType
{
    #[cfg(not(feature = "rounding"))] {
        match order {
            cmp::Ordering::Greater  => f.next_positive(),
            cmp::Ordering::Less     => f,
            cmp::Ordering::Equal    => f.round_positive_even(),
        }
    }

    // Compare the actual digits to the round-down or halfway point.
    #[cfg(feature = "rounding")] {
        match order {
            cmp::Ordering::Greater  => match kind {
                // Comparison with `b+h`, above. Round-up.
                RoundingKind::NearestTieEven     => f.next_positive(),
                RoundingKind::NearestTieAwayZero => f.next_positive(),
                // Comparison with `b`, above. Truncated digits.
                RoundingKind::Upward             => f.next_positive(),
                RoundingKind::Downward           => f,
                _                                => unimplemented!(),
            },
            // This cannot happen for RoundingKind Upward or Downward.
            // For round-nearest algorithms, we are below `b+h` so round-down.
            cmp::Ordering::Less     => match kind {
                // Comparison with `b+h`, below. Stay put.
                RoundingKind::NearestTieEven     => f,
                RoundingKind::NearestTieAwayZero => f,
                // Comparison with `b`, below. Truncated digits, but below our
                // estimate `b`.
                RoundingKind::Upward             => f,
                RoundingKind::Downward           => f.prev_positive(),
                _                                => unimplemented!(),
            },
            cmp::Ordering::Equal    => match kind {
                // Only round-up if the mantissa is odd.
                RoundingKind::NearestTieEven     => f.round_positive_even(),
                // Always round-up, we want to go away from 0.
                RoundingKind::NearestTieAwayZero => f.next_positive(),
                // Comparison with `b`, equal. No truncated digits.
                RoundingKind::Upward             => f,
                RoundingKind::Downward           => f,
                _                                => unimplemented!(),
            },
        }
    }
}

// BIGCOMP

/// Get the appropriate scaling factor from the digit count.
///
/// * `radix`           - Radix for the number parsing.
/// * `sci_exponent`    - Exponent of basen string in scientific notation.
#[inline]
pub fn scaling_factor(radix: u32, sci_exponent: u32)
    -> Bigint
{
    let mut factor = Bigint { data: stackvec![1], exp: 0 };
    factor.imul_power(radix, sci_exponent);
    factor
}

/// Make a ratio for the numerator and denominator.
///
/// * `radix`           - Radix for the number parsing.
/// * `sci_exponent`    - Exponent of basen string in scientific notation.
/// * `f`               - Sub-halfway (`b`) float.
pub(super) fn make_ratio<F: Float>(radix: u32, sci_exponent: i32, f: F, kind: RoundingKind)
    -> (Bigint, Bigint)
    where F: FloatType
{
    let theor = theoretical_float(f, kind).to_bigint();
    let factor = scaling_factor(radix, sci_exponent.abs().as_u32());
    let mut num: Bigint;
    let mut den: Bigint;

    if sci_exponent < 0 {
        // Need to have the basen factor be the numerator, and the fp
        // be the denominator. Since we assumed that theor was the numerator,
        // if it's the denominator, we need to multiply it into the numerator.
        num = factor;
        num.imul_large(&theor);
        den = Bigint { data: stackvec![1], exp: -theor.exp };
    } else {
        num = theor;
        den = factor;
    }

    // Scale the denominator so it has the number of bits
    // in the radix as the number of leading zeros.
    let wlz = integral_binary_factor(radix).as_usize();
    let nlz = den.leading_zeros().wrapping_sub(wlz) & (u32::BITS - 1);
    small::ishl_bits(den.data_mut(), nlz);
    den.exp -= nlz.as_i32();

    // Need to scale the numerator or denominator to the same value.
    // We don't want to shift the denominator, so...
    let diff = den.exp - num.exp;
    let shift = diff.abs().as_usize();
    if diff < 0 {
        // Need to shift the numerator left.
        small::ishl(num.data_mut(), shift);
        num.exp -= shift.as_i32()
    } else if diff > 0 {
        // Need to shift denominator left, go by a power of Limb::BITS.
        // After this, the numerator will be non-normalized, and the
        // denominator will be normalized.
        // We need to add one to the quotient,since we're calculating the
        // ceiling of the divmod.
        let (q, r) = shift.ceil_divmod(Limb::BITS);
        // Since we're using a power from the denominator to the
        // numerator, we to invert r, not add u32::BITS.
        let r = -r;
        small::ishl_bits(num.data_mut(), r.as_usize());
        num.exp -= r;
        if !q.is_zero() {
            den.pad_zero_digits(q);
            den.exp -= Limb::BITS.as_i32() * q.as_i32();
        }
    }

    (num, den)
}

/// Compare digits between the generated values the ratio and the actual view.
///
/// * `digits`      - Actual digits from the mantissa.
/// * `radix`       - Radix for the number parsing.
/// * `num`         - Numerator for the fraction.
/// * `denm`        - Denominator for the fraction.
pub(super) fn compare_digits<'a, Iter>(mut digits: Iter, radix: u32, mut num: Bigint, den: Bigint)
    -> cmp::Ordering
    where Iter: Iterator<Item=&'a u8>
{
    // Iterate until we get a difference in the generated digits.
    // If we run out,return Equal.
    let radix = as_limb(radix);
    while !num.data.is_empty() {
        let actual = match digits.next() {
            Some(&v) => v,
            None    => return cmp::Ordering::Less,
        };
        let expected = digit_to_char(num.quorem(&den));
        num.imul_small(radix);
        if actual < expected {
            return cmp::Ordering::Less;
        } else if actual > expected {
            return cmp::Ordering::Greater;
        }
    }

    // We cannot have any trailing zeros, so if there any remaining digits,
    // we're >= to the value.
    match digits.next().is_none() {
        true  => cmp::Ordering::Equal,
        false => cmp::Ordering::Greater,
    }
}

/// Generate the correct representation from a halfway representation.
///
/// The digits iterator must not have any trailing zeros (true for
/// `FloatSlice`).
///
/// * `digits`          - Actual digits from the mantissa.
/// * `radix`           - Radix for the number parsing.
/// * `sci_exponent`    - Exponent of basen string in scientific notation.
/// * `f`               - Sub-halfway (`b`) float.
#[inline]
pub(super) fn atof<F>(slc: FloatSlice, radix: u32, f: F, kind: RoundingKind)
    -> F
    where F: FloatType
{
    // This works when we're doing, like, round-even.
    let (num, den) = make_ratio(radix, slc.scientific_exponent(), f, kind);
    let order = compare_digits(slc.mantissa_iter(), radix, num, den);
    round_to_native(f, order, kind)
}

// TESTS
// -----

#[cfg(test)]
mod tests {
    use util::test::*;
    use super::*;

    #[test]
    fn b_test() {
        assert_eq!(b(1e-45_f32), (1, -149).into());
        assert_eq!(b(5e-324_f64), (1, -1074).into());
        assert_eq!(b(1e-323_f64), (2, -1074).into());
        assert_eq!(b(2e-323_f64), (4, -1074).into());
        assert_eq!(b(3e-323_f64), (6, -1074).into());
        assert_eq!(b(4e-323_f64), (8, -1074).into());
        assert_eq!(b(5e-323_f64), (10, -1074).into());
        assert_eq!(b(6e-323_f64), (12, -1074).into());
        assert_eq!(b(7e-323_f64), (14, -1074).into());
        assert_eq!(b(8e-323_f64), (16, -1074).into());
        assert_eq!(b(9e-323_f64), (18, -1074).into());
        assert_eq!(b(1_f32), (8388608, -23).into());
        assert_eq!(b(1_f64), (4503599627370496, -52).into());
        assert_eq!(b(1e38_f32), (9860761, 103).into());
        assert_eq!(b(1e308_f64), (5010420900022432, 971).into());
    }

    #[test]
    fn bh_test() {
        assert_eq!(bh(1e-45_f32), (3, -150).into());
        assert_eq!(bh(5e-324_f64), (3, -1075).into());
        assert_eq!(bh(1_f32), (16777217, -24).into());
        assert_eq!(bh(1_f64), (9007199254740993, -53).into());
        assert_eq!(bh(1e38_f32), (19721523, 102).into());
        assert_eq!(bh(1e308_f64), (10020841800044865, 970).into());
    }

    // SLOW PATH

    #[test]
    fn scaling_factor_test() {
        assert_eq!(scaling_factor(10, 0), Bigint { data: deduce_from_u32(&[1]), exp: 0 });
        assert_eq!(scaling_factor(10, 20), Bigint { data: deduce_from_u32(&[1977800241, 22204]), exp: 20 });
        assert_eq!(scaling_factor(10, 300), Bigint { data: deduce_from_u32(&[2502905297, 773182544, 1122691908, 922368819, 2799959258, 2138784391, 2365897751, 2382789932, 3061508751, 1799019667, 3501640837, 269048281, 2748691596, 1866771432, 2228563347, 475471294, 278892994, 2258936920, 3352132269, 1505791508, 2147965370, 25052104]), exp: 300 });
    }

    #[test]
    fn make_ratio_test() {
        let (num1, den1) = make_ratio(10, -324, 0f64, RoundingKind::NearestTieEven);
        let (num2, den2) = make_ratio(10, -324, 5e-324f64, RoundingKind::NearestTieEven);
        let (num3, den3) = make_ratio(10, 307, 8.98846567431158e+307f64, RoundingKind::NearestTieEven);

        #[cfg(limb_width_32)] {
            assert_eq!(num1, Bigint { data: stackvec![1725370368, 1252154597, 1017462556, 675087593, 2805901938, 1401824593, 1124332496, 2380663002, 1612846757, 4128923878, 1492915356, 437569744, 2975325085, 3331531962, 3367627909, 730662168, 2699172281, 1440714968, 2778340312, 690527038, 1297115354, 763425880, 1453089653, 331561842], exp: 312 });
            assert_eq!(den1, Bigint { data: stackvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 312 });

            assert_eq!(num2, Bigint { data: stackvec![881143808, 3756463792, 3052387668, 2025262779, 4122738518, 4205473780, 3372997488, 2847021710, 543572976, 3796837043, 183778774, 1312709233, 336040663, 1404661296, 1512949137, 2191986506, 3802549547, 27177609, 4040053641, 2071581115, 3891346062, 2290277640, 64301663, 994685527], exp: 312 });
            assert_eq!(den2, Bigint { data: stackvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 312 });

            assert_eq!(num3, Bigint { data: stackvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 2147483648], exp: 288 });
            assert_eq!(den3, Bigint { data: stackvec![1978138624, 2671552565, 2938166866, 3588566204, 1860064291, 2104472219, 2014975858, 2797301608, 462262832, 318515330, 1101517094, 1738264167, 3721375114, 414401884, 1406861075, 3053102637, 387329537, 2051556775, 1867945454, 3717689914, 1434550525, 1446648206, 238915486], exp: 288 });
        }

        #[cfg(limb_width_64)] {
            assert_eq!(num1, Bigint { data: stackvec![7410409304047484928, 4369968404176723173, 12051257060168107241, 4828971301551875409, 6927124077155322074, 6412022633845121254, 12778923935480989904, 14463851737583396026, 11592856673895384344, 11932880778639151320, 5571068025259989822, 6240972538554414168, 331561842], exp: 280 });
            assert_eq!(den1, Bigint { data: stackvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 280 });

            assert_eq!(num2, Bigint { data: stackvec![3784483838432903168, 13109905212530169520, 17707027106794770107, 14486913904655626228, 2334628157756414606, 789323827825812147, 1443283659023866481, 6498067065331084848, 16331825947976601418, 17351898262207902345, 16713204075779969467, 276173541953690888, 994685527], exp: 280 });
            assert_eq!(den2, Bigint { data: stackvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 280 });

            assert_eq!(num3, Bigint { data: stackvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4398046511104, 2147483648], exp: 288 });
            assert_eq!(den3, Bigint { data: stackvec![11474230898198052864, 15412774488649031250, 9038639357805614115, 12014318925423187826, 1368012926086910512, 7465787750175199526, 1779842542902160778, 13112975978653220627, 8811369254899559937, 15967356599166997998, 6213306735021621501, 238915486], exp: 288 });
        }
    }

    #[test]
    fn compare_digits_test() {
        // 2^-1074
        let num = Bigint { data: deduce_from_u32(&[1725370368, 1252154597, 1017462556, 675087593, 2805901938, 1401824593, 1124332496, 2380663002, 1612846757, 4128923878, 1492915356, 437569744, 2975325085, 3331531962, 3367627909, 730662168, 2699172281, 1440714968, 2778340312, 690527038, 1297115354, 763425880, 1453089653, 331561842]), exp: 312 };
        let den = Bigint { data: deduce_from_u32(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728]), exp: 312 };

        // Below halfway
        let digits = b"24703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328124999";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Less);

        // Exactly halfway.
        let digits = b"24703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Equal);

        // Above halfway.
        let digits = b"24703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125001";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Greater);

        // 2*2^-1074
        let num = Bigint { data: deduce_from_u32(&[881143808, 3756463792, 3052387668, 2025262779, 4122738518, 4205473780, 3372997488, 2847021710, 543572976, 3796837043, 183778774, 1312709233, 336040663, 1404661296, 1512949137, 2191986506, 3802549547, 27177609, 4040053641, 2071581115, 3891346062, 2290277640, 64301663, 994685527]), exp: 312 };
        let den = Bigint { data: deduce_from_u32(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728]), exp: 312 };

        // Below halfway
        let digits = b"74109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984374999";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Less);

        // Exactly halfway.
        let digits = b"74109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984375";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Equal);

        // Above halfway.
        let digits = b"74109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984375001";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Greater);

        // 4503599627370496*2^971
        let num = Bigint { data: deduce_from_u32(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 2147483648]), exp: 288 };
        let den = Bigint { data: deduce_from_u32(&[1978138624, 2671552565, 2938166866, 3588566204, 1860064291, 2104472219, 2014975858, 2797301608, 462262832, 318515330, 1101517094, 1738264167, 3721375114, 414401884, 1406861075, 3053102637, 387329537, 2051556775, 1867945454, 3717689914, 1434550525, 1446648206, 238915486]), exp: 288 };

        // Below halfway
        let digits = b"89884656743115805365666807213050294962762414131308158973971342756154045415486693752413698006024096935349884403114202125541629105369684531108613657287705365884742938136589844238179474556051429647415148697857438797685859063890851407391008830874765563025951597582513936655578157348020066364210154316532161708031999";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Less);

        // Exactly halfway.
        let digits = b"89884656743115805365666807213050294962762414131308158973971342756154045415486693752413698006024096935349884403114202125541629105369684531108613657287705365884742938136589844238179474556051429647415148697857438797685859063890851407391008830874765563025951597582513936655578157348020066364210154316532161708032";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Equal);

        // Above halfway.
        let digits = b"89884656743115805365666807213050294962762414131308158973971342756154045415486693752413698006024096935349884403114202125541629105369684531108613657287705365884742938136589844238179474556051429648741514697857438797685859063890851407391008830874765563025951597582513936655578157348020066364210154316532161708032001";
        assert_eq!(compare_digits(digits.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Greater);
    }
}