1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
//! Module with logic for arranging items in-sequence on multiple streams. //! //! "_Sequencing is the process of only caring about the newest items._" //! //! With sequencing, we only care about the newest items. When old items arrive we just toss them away. //! //! Example: sequence `1,3,2,5,4` will result into `1,3,5`. //! //! # Remarks //! - See [super-module](../index.html) description for more details. use super::{Arranging, ArrangingSystem}; use crate::packet::SequenceNumber; use std::{collections::HashMap, marker::PhantomData}; /// A sequencing system that can arrange items in sequence across different streams. /// /// Checkout [`SequencingStream`](./struct.SequencingStream.html), or module description for more details. /// /// # Remarks /// - See [super-module](../index.html) for more information about streams. pub struct SequencingSystem<T> { // '[HashMap]' with streams on which items can be arranged in-sequence. streams: HashMap<u8, SequencingStream<T>>, } impl<T> SequencingSystem<T> { /// Constructs a new [`SequencingSystem`](./struct.SequencingSystem.html). pub fn new() -> SequencingSystem<T> { SequencingSystem { streams: HashMap::with_capacity(32), } } } impl<T> ArrangingSystem for SequencingSystem<T> { type Stream = SequencingStream<T>; /// Returns the number of sequencing streams currently created. fn stream_count(&self) -> usize { self.streams.len() } /// Try to get an [`SequencingStream`](./struct.SequencingStream.html) by `stream_id`. /// When the stream does not exist, it will be inserted by the given `stream_id` and returned. fn get_or_create_stream(&mut self, stream_id: u8) -> &mut Self::Stream { self.streams .entry(stream_id) .or_insert_with(|| SequencingStream::new(stream_id)) } } /// A stream on which items will be arranged in-sequence. /// /// # Algorithm /// /// With every sequencing operation an `top_index` is given. /// /// There are two scenarios that are important to us. /// 1. `incoming_index` >= `top_index`. /// This item is the newest or newer than the last one we have seen. /// Because of that we should return it back to the user. /// 2. `incoming_index` < `top_index`. /// This item is older than the newest item we have seen so far. /// Since we don't care about old items we can toss it a way. /// /// # Remarks /// - See [super-module](../index.html) for more information about streams. pub struct SequencingStream<T> { // the id of this stream. _stream_id: u8, // the highest seen item index. top_index: usize, // I need `PhantomData`, otherwise, I can't use a generic in the `Arranging` implementation because `T` is not constrained. phantom: PhantomData<T>, // unique identifier which should be used for ordering on an other stream e.g. the remote endpoint. unique_item_identifier: u16, } impl<T> SequencingStream<T> { /// Constructs a new, empty '[SequencingStream](./struct.SequencingStream.html)'. /// /// The default stream will have a capacity of 32 items. pub fn new(stream_id: u8) -> SequencingStream<T> { SequencingStream { _stream_id: stream_id, top_index: 0, phantom: PhantomData, unique_item_identifier: 0, } } /// Returns the identifier of this stream. #[cfg(test)] pub fn stream_id(&self) -> u8 { self._stream_id } /// Returns the unique identifier which should be used for ordering on an other stream e.g. the remote endpoint. pub fn new_item_identifier(&mut self) -> SequenceNumber { self.unique_item_identifier = self.unique_item_identifier.wrapping_add(1); self.unique_item_identifier } } impl<T> Arranging for SequencingStream<T> { type ArrangingItem = T; /// Will arrange the given item based on a sequencing algorithm. /// /// With every sequencing operation an `top_index` is given. /// /// # Algorithm /// /// There are two scenarios that are important to us. /// 1. `incoming_index` >= `top_index`. /// This item is the newest or newer than the last one we have seen. /// Because of that we should return it back to the user. /// 2. `incoming_index` < `top_index`. /// This item is older than we the newest packet we have seen so far. /// Since we don't care about old items we can toss it a way. /// /// # Remark /// - All old packets will be tossed away. /// - None is returned when an old packet is received. fn arrange( &mut self, incoming_index: usize, item: Self::ArrangingItem, ) -> Option<Self::ArrangingItem> { if incoming_index > self.top_index { self.top_index = incoming_index; return Some(item); } None } } #[cfg(test)] mod tests { use super::{Arranging, ArrangingSystem, SequencingSystem}; #[derive(Debug, PartialEq, Clone)] struct Packet { pub sequence: usize, pub ordering_stream: u8, } impl Packet { fn new(sequence: usize, ordering_stream: u8) -> Packet { Packet { sequence, ordering_stream, } } } #[test] fn create_stream() { let mut system: SequencingSystem<Packet> = SequencingSystem::new(); let stream = system.get_or_create_stream(1); assert_eq!(stream.stream_id(), 1); } #[test] fn create_existing_stream() { let mut system: SequencingSystem<Packet> = SequencingSystem::new(); system.get_or_create_stream(1); let stream = system.get_or_create_stream(1); assert_eq!(stream.stream_id(), 1); } /// asserts that the given collection, on the left, should result - after it is sequenced - into the given collection, on the right. macro_rules! assert_sequence { ( [$( $x:expr ),*], [$( $y:expr),*], $stream_id:expr) => { { // initialize vector of given range on the left. let mut before: Vec<usize> = Vec::new(); $( before.push($x); )* // initialize vector of given range on the right. let mut after: Vec<usize> = Vec::new(); $( after.push($y); )* // generate test packets let mut packets = Vec::new(); for (_, v) in before.iter().enumerate() { packets.push(Packet::new(*v, $stream_id)); } // create system to handle sequenced packets. let mut sequence_system = SequencingSystem::<Packet>::new(); // get stream '1' to process the sequenced packets on. let stream = sequence_system.get_or_create_stream(1); // get packets arranged in sequence. let mut sequenced_packets = Vec::new(); for packet in packets.into_iter() { match stream.arrange(packet.sequence, packet.clone()) { Some(packet) => { sequenced_packets.push(packet.sequence);}, None => {} }; } // assert if the expected range of the given numbers equals to the processed range which is in sequence. assert_eq!(after, sequenced_packets); } }; } // This will assert a bunch of ranges to a correct sequenced range. #[test] fn can_sequence() { assert_sequence!([1, 3, 5, 4, 2], [1, 3, 5], 1); assert_sequence!([1, 5, 4, 3, 2], [1, 5], 1); assert_sequence!([5, 3, 4, 2, 1], [5], 1); assert_sequence!([4, 3, 2, 1, 5], [4, 5], 1); assert_sequence!([2, 1, 4, 3, 5], [2, 4, 5], 1); assert_sequence!([5, 2, 1, 4, 3], [5], 1); assert_sequence!([3, 2, 4, 1, 5], [3, 4, 5], 1); } // This will assert a bunch of ranges to a correct sequenced range. #[test] fn sequence_on_multiple_streams() { assert_sequence!([1, 3, 5, 4, 2], [1, 3, 5], 1); assert_sequence!([1, 5, 4, 3, 2], [1, 5], 2); assert_sequence!([5, 3, 4, 2, 1], [5], 3); assert_sequence!([4, 3, 2, 1, 5], [4, 5], 4); assert_sequence!([2, 1, 4, 3, 5], [2, 4, 5], 5); assert_sequence!([5, 2, 1, 4, 3], [5], 6); assert_sequence!([3, 2, 4, 1, 5], [3, 4, 5], 7); } }