1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
//! Module with logic for arranging items in-sequence on multiple streams.
//!
//! "_Sequencing is the process of only caring about the newest items._"
//!
//! With sequencing, we only care about the newest items. When old items arrive we just toss them away.
//!
//! Example: sequence `1,3,2,5,4` will result into `1,3,5`.
//!
//! # Remarks
//! - See [super-module](../index.html) description for more details.

use super::{Arranging, ArrangingSystem};
use crate::packet::SequenceNumber;
use std::{collections::HashMap, marker::PhantomData};

/// A sequencing system that can arrange items in sequence across different streams.
///
/// Checkout [`SequencingStream`](./struct.SequencingStream.html), or module description for more details.
///
/// # Remarks
/// - See [super-module](../index.html) for more information about streams.
pub struct SequencingSystem<T> {
    // '[HashMap]' with streams on which items can be arranged in-sequence.
    streams: HashMap<u8, SequencingStream<T>>,
}

impl<T> SequencingSystem<T> {
    /// Constructs a new [`SequencingSystem`](./struct.SequencingSystem.html).
    pub fn new() -> SequencingSystem<T> {
        SequencingSystem {
            streams: HashMap::with_capacity(32),
        }
    }
}

impl<T> ArrangingSystem for SequencingSystem<T> {
    type Stream = SequencingStream<T>;

    /// Returns the number of sequencing streams currently created.
    fn stream_count(&self) -> usize {
        self.streams.len()
    }

    /// Try to get an [`SequencingStream`](./struct.SequencingStream.html) by `stream_id`.
    /// When the stream does not exist, it will be inserted by the given `stream_id` and returned.
    fn get_or_create_stream(&mut self, stream_id: u8) -> &mut Self::Stream {
        self.streams
            .entry(stream_id)
            .or_insert_with(|| SequencingStream::new(stream_id))
    }
}

/// A stream on which items will be arranged in-sequence.
///
/// # Algorithm
///
/// With every sequencing operation an `top_index` is given.
///
/// There are two scenarios that are important to us.
/// 1. `incoming_index` >= `top_index`.
/// This item is the newest or newer than the last one we have seen.
/// Because of that we should return it back to the user.
/// 2. `incoming_index` < `top_index`.
/// This item is older than the newest item we have seen so far.
/// Since we don't care about old items we can toss it a way.
///
/// # Remarks
/// - See [super-module](../index.html) for more information about streams.
pub struct SequencingStream<T> {
    // the id of this stream.
    _stream_id: u8,
    // the highest seen item index.
    top_index: usize,
    // I need `PhantomData`, otherwise, I can't use a generic in the `Arranging` implementation because `T` is not constrained.
    phantom: PhantomData<T>,
    // unique identifier which should be used for ordering on an other stream e.g. the remote endpoint.
    unique_item_identifier: u16,
}

impl<T> SequencingStream<T> {
    /// Constructs a new, empty '[SequencingStream](./struct.SequencingStream.html)'.
    ///
    /// The default stream will have a capacity of 32 items.
    pub fn new(stream_id: u8) -> SequencingStream<T> {
        SequencingStream {
            _stream_id: stream_id,
            top_index: 0,
            phantom: PhantomData,
            unique_item_identifier: 0,
        }
    }

    /// Returns the identifier of this stream.
    #[cfg(test)]
    pub fn stream_id(&self) -> u8 {
        self._stream_id
    }

    /// Returns the unique identifier which should be used for ordering on an other stream e.g. the remote endpoint.
    pub fn new_item_identifier(&mut self) -> SequenceNumber {
        self.unique_item_identifier = self.unique_item_identifier.wrapping_add(1);
        self.unique_item_identifier
    }
}

impl<T> Arranging for SequencingStream<T> {
    type ArrangingItem = T;

    /// Will arrange the given item based on a sequencing algorithm.
    ///
    /// With every sequencing operation an `top_index` is given.
    ///
    /// # Algorithm
    ///
    /// There are two scenarios that are important to us.
    /// 1. `incoming_index` >= `top_index`.
    /// This item is the newest or newer than the last one we have seen.
    /// Because of that we should return it back to the user.
    /// 2. `incoming_index` < `top_index`.
    /// This item is older than we the newest packet we have seen so far.
    /// Since we don't care about old items we can toss it a way.
    ///
    /// # Remark
    /// - All old packets will be tossed away.
    /// - None is returned when an old packet is received.
    fn arrange(
        &mut self,
        incoming_index: usize,
        item: Self::ArrangingItem,
    ) -> Option<Self::ArrangingItem> {
        if incoming_index > self.top_index {
            self.top_index = incoming_index;
            return Some(item);
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use super::{Arranging, ArrangingSystem, SequencingSystem};

    #[derive(Debug, PartialEq, Clone)]
    struct Packet {
        pub sequence: usize,
        pub ordering_stream: u8,
    }

    impl Packet {
        fn new(sequence: usize, ordering_stream: u8) -> Packet {
            Packet {
                sequence,
                ordering_stream,
            }
        }
    }

    #[test]
    fn create_stream() {
        let mut system: SequencingSystem<Packet> = SequencingSystem::new();
        let stream = system.get_or_create_stream(1);

        assert_eq!(stream.stream_id(), 1);
    }

    #[test]
    fn create_existing_stream() {
        let mut system: SequencingSystem<Packet> = SequencingSystem::new();

        system.get_or_create_stream(1);
        let stream = system.get_or_create_stream(1);

        assert_eq!(stream.stream_id(), 1);
    }

    /// asserts that the given collection, on the left, should result - after it is sequenced - into the given collection, on the right.
    macro_rules! assert_sequence {
        ( [$( $x:expr ),*], [$( $y:expr),*], $stream_id:expr) => {
            {
                // initialize vector of given range on the left.
                let mut before: Vec<usize> = Vec::new();
                $(
                    before.push($x);
                )*

                // initialize vector of given range on the right.
                let mut after: Vec<usize> = Vec::new();
                $(
                    after.push($y);
                )*

                // generate test packets
                let mut packets = Vec::new();

                for (_, v) in before.iter().enumerate() {
                    packets.push(Packet::new(*v, $stream_id));
                }

                // create system to handle sequenced packets.
                let mut sequence_system = SequencingSystem::<Packet>::new();

                // get stream '1' to process the sequenced packets on.
                let stream = sequence_system.get_or_create_stream(1);

                // get packets arranged in sequence.
                let mut sequenced_packets = Vec::new();

                for packet in packets.into_iter() {
                    match stream.arrange(packet.sequence, packet.clone()) {
                        Some(packet) => { sequenced_packets.push(packet.sequence);},
                        None => {}
                    };
                }

               // assert if the expected range of the given numbers equals to the processed range which is in sequence.
               assert_eq!(after, sequenced_packets);
            }
        };
    }

    // This will assert a bunch of ranges to a correct sequenced range.
    #[test]
    fn can_sequence() {
        assert_sequence!([1, 3, 5, 4, 2], [1, 3, 5], 1);
        assert_sequence!([1, 5, 4, 3, 2], [1, 5], 1);
        assert_sequence!([5, 3, 4, 2, 1], [5], 1);
        assert_sequence!([4, 3, 2, 1, 5], [4, 5], 1);
        assert_sequence!([2, 1, 4, 3, 5], [2, 4, 5], 1);
        assert_sequence!([5, 2, 1, 4, 3], [5], 1);
        assert_sequence!([3, 2, 4, 1, 5], [3, 4, 5], 1);
    }

    // This will assert a bunch of ranges to a correct sequenced range.
    #[test]
    fn sequence_on_multiple_streams() {
        assert_sequence!([1, 3, 5, 4, 2], [1, 3, 5], 1);
        assert_sequence!([1, 5, 4, 3, 2], [1, 5], 2);
        assert_sequence!([5, 3, 4, 2, 1], [5], 3);
        assert_sequence!([4, 3, 2, 1, 5], [4, 5], 4);
        assert_sequence!([2, 1, 4, 3, 5], [2, 4, 5], 5);
        assert_sequence!([5, 2, 1, 4, 3], [5], 6);
        assert_sequence!([3, 2, 4, 1, 5], [3, 4, 5], 7);
    }
}