1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
//! Module with logic for arranging items in-order on multiple streams. //! //! _"Order is the process of putting something in a particular order."_ //! //! # How ordering works. //! Imagine we have this sequence: `1,5,4,2,3` and we want the user to eventually see: `1,2,3,4,5`. //! //! Let's define some variables: //! //! ## Variable Setup //! **hashmap** //! //! | Key | Value | //! | :-------------: | :-------------: | //! | _ | _ | //! //! `expected_index = 1;` //! //! ## Ordering //! **Receive '1'** //! //! - Packet 1 is equals to our expected index we can return it immediately. //! - Increase `expected_index` to '2' //! //! **Receive '5'** //! //! Packet '5' is not equal to our expected index so we need to store it until we received **all** packets up to 5 before returning. //! //! | Key | Value | //! | :-------------: | :-------------: | //! | 5 | packet | //! //! **Receive '4'** //! //! Packet '4' is not equal to our expected index so we need to store it until we received **all** packets up to 4 before returning. //! //! | Key | Value | //! | :-------------: | :-------------: | //! | 5 | packet | //! | 4 | packet | //! //! **Receive '3'** //! //! Packet '3' is not equal to our expected index so we need to store it until we received **all** packets up to 3 before returning. //! //! | Key | Value | //! | :-------------: | :-------------: | //! | 5 | packet | //! | 4 | packet | //! | 4 | packet | //! //! **Receive '2'** //! //! - Packet 2 is equals to our expected index we can return it immediately. //! - Increase `expected_index` to '3' //! //! Now we received our `expected_index` we can check if we have the next `expected_index` in storage. //! //! This could be done with an iterator which returns packets as long there are packets in our storage matching the `expected_index`. //! //! ```no-run //! let stream = OrderingStream::new(); //! //! let iter = stream.iter_mut(); //! //! while let Some(packet) = iter.next() { //! // packets from iterator are in order. //! } //! ``` //! //! # Remarks //! - See [super-module](../index.html) description for more details. use super::{Arranging, ArrangingSystem}; use crate::packet::SequenceNumber; use std::collections::HashMap; /// An ordering system that can arrange items in order on different streams. /// /// Checkout [`OrderingStream`](./struct.OrderingStream.html), or module description for more details. /// /// # Remarks /// - See [super-module](../index.html) for more information about streams. pub struct OrderingSystem<T> { // '[HashMap]' with streams on which items can be ordered. streams: HashMap<u8, OrderingStream<T>>, } impl<T> OrderingSystem<T> { /// Constructs a new [`OrderingSystem`](./struct.OrderingSystem.html). pub fn new() -> OrderingSystem<T> { OrderingSystem { streams: HashMap::with_capacity(32), } } } impl<'a, T> ArrangingSystem for OrderingSystem<T> { type Stream = OrderingStream<T>; /// Returns the number of ordering streams currently active. fn stream_count(&self) -> usize { self.streams.len() } /// Try to get an [`OrderingStream`](./struct.OrderingStream.html) by `stream_id`. /// When the stream does not exist, it will be inserted by the given `stream_id` and returned. fn get_or_create_stream(&mut self, stream_id: u8) -> &mut Self::Stream { self.streams .entry(stream_id) .or_insert_with(|| OrderingStream::new(stream_id)) } } /// A stream on which items will be arranged in-order. /// /// # Algorithm /// /// With every ordering operation an `incoming_index` is given. We also keep a local record of the `expected_index`. /// /// There are three scenarios that are important to us. /// 1. `incoming_index` == `expected_index`. /// This package meets the expected order, so we can return it immediately. /// 2. `incoming_index` > `expected_index`. /// This package is newer than we expect, so we have to hold it temporarily until we have received all previous packages. /// 3. `incoming_index`< `expected_index` /// This can only happen in cases where we have a duplicated package. Again we don't give anything back. /// # Remarks /// - See [super-module](../index.html) for more information about streams. pub struct OrderingStream<T> { // the id of this stream. _stream_id: u8, // the storage for items that are waiting for older items to arrive. // the items will be stored by key and value where the key is the incoming index and the value is the item value. storage: HashMap<usize, T>, // the next expected item index. expected_index: usize, // unique identifier which should be used for ordering on a different stream e.g. the remote endpoint. unique_item_identifier: u16, } impl<T> OrderingStream<T> { /// Constructs a new, empty [`OrderingStream<T>`](./struct.OrderingStream.html). /// /// The default stream will have a capacity of 32 items. pub fn new(stream_id: u8) -> OrderingStream<T> { OrderingStream::with_capacity(1024, stream_id) } /// Constructs a new, empty [`OrderingStream`] with the specified capacity. /// /// The stream will be able to hold exactly capacity elements without /// reallocating. If capacity is 0, the vector will not allocate. /// /// It is important to note that although the returned stream has the capacity specified, /// the stream will have a zero length. /// /// [`OrderingStream`]: ./struct.OrderingStream.html pub fn with_capacity(size: usize, stream_id: u8) -> OrderingStream<T> { OrderingStream { storage: HashMap::with_capacity(size), expected_index: 1, _stream_id: stream_id, unique_item_identifier: 0, } } /// Returns the identifier of this stream. #[cfg(test)] pub fn stream_id(&self) -> u8 { self._stream_id } /// Returns the next expected index. #[cfg(test)] pub fn expected_index(&self) -> usize { self.expected_index } /// Returns the unique identifier which should be used for ordering on the other stream e.g. the remote endpoint. pub fn new_item_identifier(&mut self) -> SequenceNumber { self.unique_item_identifier = self.unique_item_identifier.wrapping_add(1); self.unique_item_identifier } /// Returns an iterator of stored items. /// /// # Algorithm for returning items from an Iterator. /// /// 1. See if there is an item matching our `expected_index` /// 2. If there is return the `Some(item)` /// - Increase the `expected_index` /// - Start at '1' /// 3. If there isn't return `None` /// /// # Example /// /// ```ignore /// let stream = OrderingStream::new(); /// /// let iter = stream.iter_mut(); /// /// while let Some(item) = iter.next() { /// // Items from iterator are in order. /// } /// ``` /// /// # Remarks /// - Iterator mutates the `expected_index`. /// - You can't use this iterator for iterating trough all cached values. pub fn iter_mut(&mut self) -> IterMut<T> { IterMut { items: &mut self.storage, expected_index: &mut self.expected_index, } } } impl<T> Arranging for OrderingStream<T> { type ArrangingItem = T; /// Will order the given item based on the ordering algorithm. /// /// With every ordering operation an `incoming_index` is given. We also keep a local record of the `expected_index`. /// /// # Algorithm /// /// There are three scenarios that are important to us. /// 1. `incoming_index` == `expected_index`. /// This package meets the expected order, so we can return it immediately. /// 2. `incoming_index` > `expected_index`. /// This package is newer than we expect, so we have to hold it temporarily until we have received all previous packages. /// 3. `incoming_index` < `expected_index` /// This can only happen in cases where we have a duplicated package. Again we don't give anything back. /// /// # Remark /// - When we receive an item there is a possibility that a gab is filled and one or more items will could be returned. /// You should use the `iter_mut` instead for reading the items in order. /// However the item given to `arrange` will be returned directly when it matches the `expected_index`. fn arrange( &mut self, incoming_offset: usize, item: Self::ArrangingItem, ) -> Option<Self::ArrangingItem> { if incoming_offset == self.expected_index { self.expected_index += 1; Some(item) } else if incoming_offset > self.expected_index { self.storage.insert(incoming_offset, item); None } else { // only occurs when we get a duplicated incoming_offset. None } } } /// Mutable Iterator for [`OrderingStream<T>`](./struct.OrderingStream.html). /// /// # Algorithm for returning items from Iterator. /// /// 1. See if there is an item matching our `expected_index` /// 2. If there is return the `Some(item)` /// - Increase the `expected_index` /// - Start at '1' /// 3. If there isn't return `None` /// /// # Remarks /// /// - Iterator mutates the `expected_index`. /// - You can't use this iterator for iterating trough all cached values. pub struct IterMut<'a, T> { items: &'a mut HashMap<usize, T>, expected_index: &'a mut usize, } impl<'a, T> Iterator for IterMut<'a, T> { type Item = T; /// Returns `Some` when there is an item in our cache matching the `expected_index`. /// Returns `None` if there are no times matching our `expected` index. fn next(&mut self) -> Option<<Self as Iterator>::Item> { match self.items.remove(&self.expected_index) { None => None, Some(e) => { *self.expected_index += 1; Some(e) } } } } #[cfg(test)] mod tests { use super::{Arranging, ArrangingSystem, OrderingSystem}; #[derive(Debug, PartialEq, Clone)] struct Packet { pub sequence: usize, pub ordering_stream: u8, } impl Packet { fn new(sequence: usize, ordering_stream: u8) -> Packet { Packet { sequence, ordering_stream, } } } #[test] fn create_stream() { let mut system: OrderingSystem<Packet> = OrderingSystem::new(); let stream = system.get_or_create_stream(1); assert_eq!(stream.expected_index(), 1); assert_eq!(stream.stream_id(), 1); } #[test] fn create_existing_stream() { let mut system: OrderingSystem<Packet> = OrderingSystem::new(); system.get_or_create_stream(1); let stream = system.get_or_create_stream(1); assert_eq!(stream.stream_id(), 1); } #[test] fn can_iterate() { let mut system: OrderingSystem<Packet> = OrderingSystem::new(); system.get_or_create_stream(1); let stream = system.get_or_create_stream(1); let stub_packet1 = Packet::new(1, 1); let stub_packet2 = Packet::new(2, 1); let stub_packet3 = Packet::new(3, 1); let stub_packet4 = Packet::new(4, 1); let stub_packet5 = Packet::new(5, 1); { assert_eq!( stream.arrange(1, stub_packet1.clone()).unwrap(), stub_packet1 ); stream.arrange(4, stub_packet4.clone()).is_none(); stream.arrange(5, stub_packet5.clone()).is_none(); stream.arrange(3, stub_packet3.clone()).is_none(); } { let mut iterator = stream.iter_mut(); // since we are awaiting for packet '2' our iterator should not return yet. assert_eq!(iterator.next(), None); } { assert_eq!( stream.arrange(2, stub_packet2.clone()).unwrap(), stub_packet2 ); } { // since we processed packet 2 by now we should be able to iterate and get back: 3,4,5; let mut iterator = stream.iter_mut(); assert_eq!(iterator.next().unwrap(), stub_packet3); assert_eq!(iterator.next().unwrap(), stub_packet4); assert_eq!(iterator.next().unwrap(), stub_packet5); } } /// Asserts that the given collection, on the left, should result - after it is ordered - into the given collection, on the right. macro_rules! assert_order { ( [$( $x:expr ),*] , [$( $y:expr),*] , $stream_id:expr) => { { // initialize vector of given range on the left. let mut before: Vec<usize> = Vec::new(); $( before.push($x); )* // initialize vector of given range on the right. let mut after: Vec<usize> = Vec::new(); $( after.push($y); )* // generate test packets let mut packets = Vec::new(); for (_, v) in before.iter().enumerate() { packets.push(Packet::new(*v, $stream_id)); } // create system to handle the ordering of our packets. let mut ordering_system = OrderingSystem::<Packet>::new(); // get stream '1' to order the packets on. let stream = ordering_system.get_or_create_stream(1); // order packets let mut ordered_packets = Vec::new(); for packet in packets.into_iter() { match stream.arrange(packet.sequence, packet.clone()) { Some(packet) => { ordered_packets.push(packet.sequence); // empty the remaining ordered packets into an vector so that we can check if they are ordered. let mut iter = stream.iter_mut(); while let Some(packet) = iter.next() { ordered_packets.push(packet.sequence); } } None => {} }; } // assert if the expected range of the given numbers equals to the processed range which is in sequence. assert_eq!(after, ordered_packets); } }; } #[test] fn expect_right_order() { // we order on stream 1 assert_order!([1, 3, 5, 4, 2], [1, 2, 3, 4, 5], 1); assert_order!([1, 5, 4, 3, 2], [1, 2, 3, 4, 5], 1); assert_order!([5, 3, 4, 2, 1], [1, 2, 3, 4, 5], 1); assert_order!([4, 3, 2, 1, 5], [1, 2, 3, 4, 5], 1); assert_order!([2, 1, 4, 3, 5], [1, 2, 3, 4, 5], 1); assert_order!([5, 2, 1, 4, 3], [1, 2, 3, 4, 5], 1); assert_order!([3, 2, 4, 1, 5], [1, 2, 3, 4, 5], 1); assert_order!([2, 1, 4, 3, 5], [1, 2, 3, 4, 5], 1); } #[test] fn order_on_multiple_streams() { // we order on streams [1...8] assert_order!([1, 3, 5, 4, 2], [1, 2, 3, 4, 5], 1); assert_order!([1, 5, 4, 3, 2], [1, 2, 3, 4, 5], 2); assert_order!([5, 3, 4, 2, 1], [1, 2, 3, 4, 5], 3); assert_order!([4, 3, 2, 1, 5], [1, 2, 3, 4, 5], 4); assert_order!([2, 1, 4, 3, 5], [1, 2, 3, 4, 5], 5); assert_order!([5, 2, 1, 4, 3], [1, 2, 3, 4, 5], 6); assert_order!([3, 2, 4, 1, 5], [1, 2, 3, 4, 5], 7); assert_order!([2, 1, 4, 3, 5], [1, 2, 3, 4, 5], 8); } }