#![cfg_attr(feature = "cargo-clippy", allow(too_many_arguments))]
use byteorder::{BigEndian, WriteBytesExt};
use math::utils::clamp;
use num_iter::range_step;
use std::io::{self, Write};
use color;
use super::entropy::build_huff_lut;
use super::transform;
static SOF0: u8 = 0xC0;
static DHT: u8 = 0xC4;
static SOI: u8 = 0xD8;
static EOI: u8 = 0xD9;
static SOS: u8 = 0xDA;
static DQT: u8 = 0xDB;
static APP0: u8 = 0xE0;
#[cfg_attr(rustfmt, rustfmt_skip)]
static STD_LUMA_QTABLE: [u8; 64] = [
    16, 11, 10, 16,  24,  40,  51,  61,
    12, 12, 14, 19,  26,  58,  60,  55,
    14, 13, 16, 24,  40,  57,  69,  56,
    14, 17, 22, 29,  51,  87,  80,  62,
    18, 22, 37, 56,  68, 109, 103,  77,
    24, 35, 55, 64,  81, 104, 113,  92,
    49, 64, 78, 87, 103, 121, 120, 101,
    72, 92, 95, 98, 112, 100, 103,  99,
];
#[cfg_attr(rustfmt, rustfmt_skip)]
static STD_CHROMA_QTABLE: [u8; 64] = [
    17, 18, 24, 47, 99, 99, 99, 99,
    18, 21, 26, 66, 99, 99, 99, 99,
    24, 26, 56, 99, 99, 99, 99, 99,
    47, 66, 99, 99, 99, 99, 99, 99,
    99, 99, 99, 99, 99, 99, 99, 99,
    99, 99, 99, 99, 99, 99, 99, 99,
    99, 99, 99, 99, 99, 99, 99, 99,
    99, 99, 99, 99, 99, 99, 99, 99,
];
static STD_LUMA_DC_CODE_LENGTHS: [u8; 16] = [
    0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
static STD_LUMA_DC_VALUES: [u8; 12] = [
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
];
static STD_CHROMA_DC_CODE_LENGTHS: [u8; 16] = [
    0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
];
static STD_CHROMA_DC_VALUES: [u8; 12] = [
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
];
static STD_LUMA_AC_CODE_LENGTHS: [u8; 16] = [
    0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D,
];
static STD_LUMA_AC_VALUES: [u8; 162] = [
    0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
    0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
    0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
    0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
    0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
    0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
    0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
    0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
    0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
    0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
    0xF9, 0xFA,
];
static STD_CHROMA_AC_CODE_LENGTHS: [u8; 16] = [
    0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77,
];
static STD_CHROMA_AC_VALUES: [u8; 162] = [
    0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
    0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
    0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
    0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
    0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
    0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
    0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
    0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
    0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
    0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
    0xF9, 0xFA,
];
static DCCLASS: u8 = 0;
static ACCLASS: u8 = 1;
static LUMADESTINATION: u8 = 0;
static CHROMADESTINATION: u8 = 1;
static LUMAID: u8 = 1;
static CHROMABLUEID: u8 = 2;
static CHROMAREDID: u8 = 3;
#[cfg_attr(rustfmt, rustfmt_skip)]
static UNZIGZAG: [u8; 64] = [
     0,  1,  8, 16,  9,  2,  3, 10,
    17, 24, 32, 25, 18, 11,  4,  5,
    12, 19, 26, 33, 40, 48, 41, 34,
    27, 20, 13,  6,  7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36,
    29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46,
    53, 60, 61, 54, 47, 55, 62, 63,
];
#[derive(Copy, Clone)]
struct Component {
    
    id: u8,
    
    h: u8,
    
    v: u8,
    
    tq: u8,
    
    dc_table: u8,
    
    ac_table: u8,
    
    _dc_pred: i32,
}
pub struct BitWriter<'a, W: 'a> {
    w: &'a mut W,
    accumulator: u32,
    nbits: u8,
}
impl<'a, W: Write + 'a> BitWriter<'a, W> {
    fn new(w: &'a mut W) -> Self {
        BitWriter {
            w,
            accumulator: 0,
            nbits: 0,
        }
    }
    fn write_bits(&mut self, bits: u16, size: u8) -> io::Result<()> {
        if size == 0 {
            return Ok(());
        }
        self.accumulator |= u32::from(bits) << (32 - (self.nbits + size)) as usize;
        self.nbits += size;
        while self.nbits >= 8 {
            let byte = (self.accumulator & (0xFFFF_FFFFu32 << 24)) >> 24;
            try!(self.w.write_all(&[byte as u8]));
            if byte == 0xFF {
                try!(self.w.write_all(&[0x00]));
            }
            self.nbits -= 8;
            self.accumulator <<= 8;
        }
        Ok(())
    }
    fn pad_byte(&mut self) -> io::Result<()> {
        self.write_bits(0x7F, 7)
    }
    fn huffman_encode(&mut self, val: u8, table: &[(u8, u16)]) -> io::Result<()> {
        let (size, code) = table[val as usize];
        if size > 16 {
            panic!("bad huffman value");
        }
        self.write_bits(code, size)
    }
    fn write_block(
        &mut self,
        block: &[i32],
        prevdc: i32,
        dctable: &[(u8, u16)],
        actable: &[(u8, u16)],
    ) -> io::Result<i32> {
        
        let dcval = block[0];
        let diff = dcval - prevdc;
        let (size, value) = encode_coefficient(diff);
        try!(self.huffman_encode(size, dctable));
        try!(self.write_bits(value, size));
        
        let mut zero_run = 0;
        let mut k = 0usize;
        loop {
            k += 1;
            if block[UNZIGZAG[k] as usize] == 0 {
                if k == 63 {
                    try!(self.huffman_encode(0x00, actable));
                    break;
                }
                zero_run += 1;
            } else {
                while zero_run > 15 {
                    try!(self.huffman_encode(0xF0, actable));
                    zero_run -= 16;
                }
                let (size, value) = encode_coefficient(block[UNZIGZAG[k] as usize]);
                let symbol = (zero_run << 4) | size;
                try!(self.huffman_encode(symbol, actable));
                try!(self.write_bits(value, size));
                zero_run = 0;
                if k == 63 {
                    break;
                }
            }
        }
        Ok(dcval)
    }
    fn write_segment(&mut self, marker: u8, data: Option<&[u8]>) -> io::Result<()> {
        try!(self.w.write_all(&[0xFF]));
        try!(self.w.write_all(&[marker]));
        if let Some(b) = data {
            try!(self.w.write_u16::<BigEndian>(b.len() as u16 + 2));
            try!(self.w.write_all(b));
        }
        Ok(())
    }
}
pub struct JPEGEncoder<'a, W: 'a> {
    writer: BitWriter<'a, W>,
    components: Vec<Component>,
    tables: Vec<u8>,
    luma_dctable: Vec<(u8, u16)>,
    luma_actable: Vec<(u8, u16)>,
    chroma_dctable: Vec<(u8, u16)>,
    chroma_actable: Vec<(u8, u16)>,
}
impl<'a, W: Write> JPEGEncoder<'a, W> {
    
    pub fn new(w: &mut W) -> JPEGEncoder<W> {
        JPEGEncoder::new_with_quality(w, 75)
    }
    
    
    
    pub fn new_with_quality(w: &mut W, quality: u8) -> JPEGEncoder<W> {
        let ld = build_huff_lut(&STD_LUMA_DC_CODE_LENGTHS, &STD_LUMA_DC_VALUES);
        let la = build_huff_lut(&STD_LUMA_AC_CODE_LENGTHS, &STD_LUMA_AC_VALUES);
        let cd = build_huff_lut(&STD_CHROMA_DC_CODE_LENGTHS, &STD_CHROMA_DC_VALUES);
        let ca = build_huff_lut(&STD_CHROMA_AC_CODE_LENGTHS, &STD_CHROMA_AC_VALUES);
        let components = vec![
            Component {
                id: LUMAID,
                h: 1,
                v: 1,
                tq: LUMADESTINATION,
                dc_table: LUMADESTINATION,
                ac_table: LUMADESTINATION,
                _dc_pred: 0,
            },
            Component {
                id: CHROMABLUEID,
                h: 1,
                v: 1,
                tq: CHROMADESTINATION,
                dc_table: CHROMADESTINATION,
                ac_table: CHROMADESTINATION,
                _dc_pred: 0,
            },
            Component {
                id: CHROMAREDID,
                h: 1,
                v: 1,
                tq: CHROMADESTINATION,
                dc_table: CHROMADESTINATION,
                ac_table: CHROMADESTINATION,
                _dc_pred: 0,
            },
        ];
        
        let scale = u32::from(clamp(quality, 1, 100));
        let scale = if scale < 50 {
            5000 / scale
        } else {
            200 - scale * 2
        };
        let mut tables = Vec::new();
        let scale_value = |&v: &u8| {
            let value = (u32::from(v) * scale + 50) / 100;
            clamp(value, 1, u32::from(u8::max_value())) as u8
        };
        tables.extend(STD_LUMA_QTABLE.iter().map(&scale_value));
        tables.extend(STD_CHROMA_QTABLE.iter().map(&scale_value));
        JPEGEncoder {
            writer: BitWriter::new(w),
            components,
            tables,
            luma_dctable: ld,
            luma_actable: la,
            chroma_dctable: cd,
            chroma_actable: ca,
        }
    }
    
    
    
    
    
    pub fn encode(
        &mut self,
        image: &[u8],
        width: u32,
        height: u32,
        c: color::ColorType,
    ) -> io::Result<()> {
        let n = color::num_components(c);
        let num_components = if n == 1 || n == 2 { 1 } else { 3 };
        try!(self.writer.write_segment(SOI, None));
        let mut buf = Vec::new();
        build_jfif_header(&mut buf);
        try!(self.writer.write_segment(APP0, Some(&buf)));
        build_frame_header(
            &mut buf,
            8,
            width as u16,
            height as u16,
            &self.components[..num_components],
        );
        try!(self.writer.write_segment(SOF0, Some(&buf)));
        assert_eq!(self.tables.len() / 64, 2);
        let numtables = if num_components == 1 { 1 } else { 2 };
        for (i, table) in self.tables.chunks(64).enumerate().take(numtables) {
            build_quantization_segment(&mut buf, 8, i as u8, table);
            try!(self.writer.write_segment(DQT, Some(&buf)));
        }
        build_huffman_segment(
            &mut buf,
            DCCLASS,
            LUMADESTINATION,
            &STD_LUMA_DC_CODE_LENGTHS,
            &STD_LUMA_DC_VALUES,
        );
        try!(self.writer.write_segment(DHT, Some(&buf)));
        build_huffman_segment(
            &mut buf,
            ACCLASS,
            LUMADESTINATION,
            &STD_LUMA_AC_CODE_LENGTHS,
            &STD_LUMA_AC_VALUES,
        );
        try!(self.writer.write_segment(DHT, Some(&buf)));
        if num_components == 3 {
            build_huffman_segment(
                &mut buf,
                DCCLASS,
                CHROMADESTINATION,
                &STD_CHROMA_DC_CODE_LENGTHS,
                &STD_CHROMA_DC_VALUES,
            );
            try!(self.writer.write_segment(DHT, Some(&buf)));
            build_huffman_segment(
                &mut buf,
                ACCLASS,
                CHROMADESTINATION,
                &STD_CHROMA_AC_CODE_LENGTHS,
                &STD_CHROMA_AC_VALUES,
            );
            try!(self.writer.write_segment(DHT, Some(&buf)));
        }
        build_scan_header(&mut buf, &self.components[..num_components]);
        try!(self.writer.write_segment(SOS, Some(&buf)));
        match c {
            color::ColorType::RGB(8) => {
                try!(self.encode_rgb(image, width as usize, height as usize, 3))
            }
            color::ColorType::RGBA(8) => {
                try!(self.encode_rgb(image, width as usize, height as usize, 4))
            }
            color::ColorType::Gray(8) => {
                try!(self.encode_gray(image, width as usize, height as usize, 1))
            }
            color::ColorType::GrayA(8) => {
                try!(self.encode_gray(image, width as usize, height as usize, 2))
            }
            _ => {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    &format!(
                    "Unsupported color type {:?}. Use 8 bit per channel RGB(A) or Gray(A) instead.",
                    c
                )[..],
                ))
            }
        };
        try!(self.writer.pad_byte());
        try!(self.writer.write_segment(EOI, None));
        Ok(())
    }
    fn encode_gray(
        &mut self,
        image: &[u8],
        width: usize,
        height: usize,
        bpp: usize,
    ) -> io::Result<()> {
        let mut yblock = [0u8; 64];
        let mut y_dcprev = 0;
        let mut dct_yblock = [0i32; 64];
        for y in range_step(0, height, 8) {
            for x in range_step(0, width, 8) {
                
                copy_blocks_gray(image, x, y, width, bpp, &mut yblock);
                
                
                transform::fdct(&yblock, &mut dct_yblock);
                
                for (i, dct) in dct_yblock.iter_mut().enumerate().take(64) {
                    *dct = ((*dct / 8) as f32 / f32::from(self.tables[i])).round() as i32;
                }
                let la = &*self.luma_actable;
                let ld = &*self.luma_dctable;
                y_dcprev = try!(self.writer.write_block(&dct_yblock, y_dcprev, ld, la));
            }
        }
        Ok(())
    }
    fn encode_rgb(
        &mut self,
        image: &[u8],
        width: usize,
        height: usize,
        bpp: usize,
    ) -> io::Result<()> {
        let mut y_dcprev = 0;
        let mut cb_dcprev = 0;
        let mut cr_dcprev = 0;
        let mut dct_yblock = [0i32; 64];
        let mut dct_cb_block = [0i32; 64];
        let mut dct_cr_block = [0i32; 64];
        let mut yblock = [0u8; 64];
        let mut cb_block = [0u8; 64];
        let mut cr_block = [0u8; 64];
        for y in range_step(0, height, 8) {
            for x in range_step(0, width, 8) {
                
                copy_blocks_ycbcr(
                    image,
                    x,
                    y,
                    width,
                    bpp,
                    &mut yblock,
                    &mut cb_block,
                    &mut cr_block,
                );
                
                
                transform::fdct(&yblock, &mut dct_yblock);
                transform::fdct(&cb_block, &mut dct_cb_block);
                transform::fdct(&cr_block, &mut dct_cr_block);
                
                for i in 0usize..64 {
                    dct_yblock[i] =
                        ((dct_yblock[i] / 8) as f32 / f32::from(self.tables[i])).round() as i32;
                    dct_cb_block[i] = ((dct_cb_block[i] / 8) as f32
                        / f32::from(self.tables[64..][i]))
                        .round() as i32;
                    dct_cr_block[i] = ((dct_cr_block[i] / 8) as f32
                        / f32::from(self.tables[64..][i]))
                        .round() as i32;
                }
                let la = &*self.luma_actable;
                let ld = &*self.luma_dctable;
                let cd = &*self.chroma_dctable;
                let ca = &*self.chroma_actable;
                y_dcprev = try!(self.writer.write_block(&dct_yblock, y_dcprev, ld, la));
                cb_dcprev = try!(self.writer.write_block(&dct_cb_block, cb_dcprev, cd, ca));
                cr_dcprev = try!(self.writer.write_block(&dct_cr_block, cr_dcprev, cd, ca));
            }
        }
        Ok(())
    }
}
fn build_jfif_header(m: &mut Vec<u8>) {
    m.clear();
    let _ = write!(m, "JFIF");
    let _ = m.write_all(&[0]);
    let _ = m.write_all(&[0x01]);
    let _ = m.write_all(&[0x02]);
    let _ = m.write_all(&[0]);
    let _ = m.write_u16::<BigEndian>(1);
    let _ = m.write_u16::<BigEndian>(1);
    let _ = m.write_all(&[0]);
    let _ = m.write_all(&[0]);
}
fn build_frame_header(
    m: &mut Vec<u8>,
    precision: u8,
    width: u16,
    height: u16,
    components: &[Component],
) {
    m.clear();
    let _ = m.write_all(&[precision]);
    let _ = m.write_u16::<BigEndian>(height);
    let _ = m.write_u16::<BigEndian>(width);
    let _ = m.write_all(&[components.len() as u8]);
    for &comp in components.iter() {
        let _ = m.write_all(&[comp.id]);
        let hv = (comp.h << 4) | comp.v;
        let _ = m.write_all(&[hv]);
        let _ = m.write_all(&[comp.tq]);
    }
}
fn build_scan_header(m: &mut Vec<u8>, components: &[Component]) {
    m.clear();
    let _ = m.write_all(&[components.len() as u8]);
    for &comp in components.iter() {
        let _ = m.write_all(&[comp.id]);
        let tables = (comp.dc_table << 4) | comp.ac_table;
        let _ = m.write_all(&[tables]);
    }
    
    let _ = m.write_all(&[0]);
    let _ = m.write_all(&[63]);
    let _ = m.write_all(&[0]);
}
fn build_huffman_segment(
    m: &mut Vec<u8>,
    class: u8,
    destination: u8,
    numcodes: &[u8],
    values: &[u8],
) {
    m.clear();
    let tcth = (class << 4) | destination;
    let _ = m.write_all(&[tcth]);
    assert_eq!(numcodes.len(), 16);
    let mut sum = 0usize;
    for &i in numcodes.iter() {
        let _ = m.write_all(&[i]);
        sum += i as usize;
    }
    assert_eq!(sum, values.len());
    for &i in values.iter() {
        let _ = m.write_all(&[i]);
    }
}
fn build_quantization_segment(m: &mut Vec<u8>, precision: u8, identifier: u8, qtable: &[u8]) {
    assert_eq!(qtable.len() % 64, 0);
    m.clear();
    let p = if precision == 8 { 0 } else { 1 };
    let pqtq = (p << 4) | identifier;
    let _ = m.write_all(&[pqtq]);
    for i in 0usize..64 {
        let _ = m.write_all(&[qtable[UNZIGZAG[i] as usize]]);
    }
}
fn encode_coefficient(coefficient: i32) -> (u8, u16) {
    let mut magnitude = coefficient.abs() as u16;
    let mut num_bits = 0u8;
    while magnitude > 0 {
        magnitude >>= 1;
        num_bits += 1;
    }
    let mask = (1 << num_bits as usize) - 1;
    let val = if coefficient < 0 {
        (coefficient - 1) as u16 & mask
    } else {
        coefficient as u16 & mask
    };
    (num_bits, val)
}
fn rgb_to_ycbcr(r: u8, g: u8, b: u8) -> (u8, u8, u8) {
    let r = f32::from(r);
    let g = f32::from(g);
    let b = f32::from(b);
    let y = 0.299f32 * r + 0.587f32 * g + 0.114f32 * b;
    let cb = -0.1687f32 * r - 0.3313f32 * g + 0.5f32 * b + 128f32;
    let cr = 0.5f32 * r - 0.4187f32 * g - 0.0813f32 * b + 128f32;
    (y as u8, cb as u8, cr as u8)
}
fn value_at(s: &[u8], index: usize) -> u8 {
    if index < s.len() {
        s[index]
    } else {
        s[s.len() - 1]
    }
}
fn copy_blocks_ycbcr(
    source: &[u8],
    x0: usize,
    y0: usize,
    width: usize,
    bpp: usize,
    yb: &mut [u8; 64],
    cbb: &mut [u8; 64],
    crb: &mut [u8; 64],
) {
    for y in 0usize..8 {
        let ystride = (y0 + y) * bpp * width;
        for x in 0usize..8 {
            let xstride = x0 * bpp + x * bpp;
            let r = value_at(source, ystride + xstride);
            let g = value_at(source, ystride + xstride + 1);
            let b = value_at(source, ystride + xstride + 2);
            let (yc, cb, cr) = rgb_to_ycbcr(r, g, b);
            yb[y * 8 + x] = yc;
            cbb[y * 8 + x] = cb;
            crb[y * 8 + x] = cr;
        }
    }
}
fn copy_blocks_gray(
    source: &[u8],
    x0: usize,
    y0: usize,
    width: usize,
    bpp: usize,
    gb: &mut [u8; 64],
) {
    for y in 0usize..8 {
        let ystride = (y0 + y) * bpp * width;
        for x in 0usize..8 {
            let xstride = x0 * bpp + x * bpp;
            gb[y * 8 + x] = value_at(source, ystride + xstride);
        }
    }
}
#[cfg(test)]
mod tests {
    use super::super::JPEGDecoder;
    use super::JPEGEncoder;
    use color::ColorType;
    use image::ImageDecoder;
    use std::io::Cursor;
    #[test]
    fn roundtrip_sanity_check() {
        
        let img = [255u8, 0, 0];
        
        let mut encoded_img = Vec::new();
        {
            let mut encoder = JPEGEncoder::new_with_quality(&mut encoded_img, 100);
            encoder
                .encode(&img, 1, 1, ColorType::RGB(8))
                .expect("Could not encode image");
        }
        
        {
            let decoder = JPEGDecoder::new(Cursor::new(&encoded_img))
                .expect("Could not decode image");
            let decoded = decoder.read_image().expect("Could not decode image");
            
            
            assert_eq!(3, decoded.len());
            assert!(decoded[0] > 0x80);
            assert!(decoded[1] < 0x80);
            assert!(decoded[2] < 0x80);
        }
    }
    #[test]
    fn grayscale_roundtrip_sanity_check() {
        
        let img = [255u8, 0, 0, 255];
        
        let mut encoded_img = Vec::new();
        {
            let mut encoder = JPEGEncoder::new_with_quality(&mut encoded_img, 100);
            encoder
                .encode(&img, 2, 2, ColorType::Gray(8))
                .expect("Could not encode image");
        }
        
        {
            let decoder = JPEGDecoder::new(Cursor::new(&encoded_img))
                .expect("Could not decode image");
            let decoded = decoder.read_image().expect("Could not decode image");
            
            
            assert_eq!(4, decoded.len());
            assert!(decoded[0] > 0x80);
            assert!(decoded[1] < 0x80);
            assert!(decoded[2] < 0x80);
            assert!(decoded[3] > 0x80);
        }
    }
}